Xem mẫu

  1. r at KÕt luËn r r an rrr a = at + an a 1 ®é cong R cña quÜ 2 ®¹o dv 2 v2 a= + = ( ) +( ) 2 2 at an dt R • an=0 -> chuyÓn ®éng th¼ng • at=0 -> chuyÓn ®éng cong ®Òu • a=0 -> chuyÓn ®éng th¼ng ®Òu
  2. 4. Mét sè d¹ng chuyÓn ®éng c¬ ®Æc biÖt 4.1. ChuyÓn ®éng th¼ng biÕn ®æi ®Òu: r v2-v20=2as a = const a n = 0 M O dv a = at = = const v = ∫ adt = at + v 0 dt 2 ds at = at + v 0 ⇒ s = ∫ (at + v 0 )dt = v= + v0t dt 2 M’ 4.2. ChuyÓn ®éng trßn T¹i M: t Δθ M T¹i M’: t’=t+Δt => OM quÐt Δθ O Δθ Δ θ dθ 2π ω 1 ω= ω = lim Δt→0 = T= ; ν= = Δt dt Δt ω T 2π
  3. r r r Quan hÖ gi÷a ω vμ v ω ( M M = Δ s = R .Δ θ r Or Δs Δθ v R = lim Δt→0 R. = R.ω lim Δt→0 Δt Δt rrr v = R.ω ⇒ v = ω × R Qui t¾c tam diÖn thuËn ( Rω) 2 2 HÖ qu¶: v an = = = Rω 2 R R r t, ω Gia tèc gãc: T¹i rr r T¹i M’: t ' = t + Δt, ω' = ω + Δω Δω dω d θ 2 β = lim Δt→0 = =2 Δt dt dt
  4. r r r Δω dω r r ω β = lim Δt→0 = ω Δt r dt rr β r r at = β × R r O r at r Or v Rr v R r aM M Qui t¾c tam diÖn thuËn β t T−¬ng tù nh− trong chuyÓn ®éng th¼ng: ω = βt + ω0 βt 2 θ= + ω0 t 2 ω − ω0 = 2βθ 2 2
  5. 4.3. ChuyÓn ®éng víi gia tèc kh«ng ®æi yr r a =0 r v0 ax ay=-g v 0y hmax αr dv x =0 O v 0x x dt Ph−¬ng tr×nh chuyÓn ®éng dv y = −g x = v 0 cos α.t dt v x = v 0 cos α 2 M gt y = v 0 sin α.t − v y = v 0 sin α − gt 2 2 gx Ph−¬ng tr×nh quÜ ®¹o y = xtgα − 2 v 0 cos α 2 2
  6. 4.4. Dao ®éng th¼ng ®iÒu hoμ ph−¬ng tr×nh dao ®éng x 0 x = A. cos( ωt + ϕ) TuÇn hoμn theo thêi gian: x(t)=x(t+nT) 2π T= ω dx v= = − ωA. sin( ωt + ϕ) dt 2 dv d x a= = 2 = − ω A. cos( ωt + ϕ) 2 dt dt
nguon tai.lieu . vn