Xem mẫu

CHAPTER FOURTEEN GIS Applications In Coastal Management: A View from the Developing World Peter C. Nwilo 14.1 INTRODUCTION Geographic Information Systems have revolutionised the way spatial data/information is acquired, stored, managed, and displayed. In the past the acquisition of spatial data was done mainly with analogue theodolite and levels, and the recording and storage of these data were done in analogue manner. Data management was a very cumbersome exercise and the display was in the form of paper maps. Recent developments in information and digital technologies, communication and satellite technology, and improved computing speed and computer hard disk space, have impacted tremendously the way spatial data is acquired, stored, managed, and displayed. The development has created a revolution in spatial information technology in a way never experienced before. Today, virtually every human activity is spatial. Some schools of thought stipulate that in countries such as the United States and the United Kingdom as much as 75-80% of all the activities is spatial. There is correlation between geospatial information technology development and economic development. Developed countries of the world are associated with high spatial information technology development. Conversely, poor economic development is associated with low spatial information technology development as witnessed in developing countries of the world. The development of Geographic Information Systems and associated technologies has created and is still creating employment opportunities all over the world. It has also led to changes of curricula of training institutions, and new training opportunities are being created. Transfer, sharing access to and development of spatial data standards have become major issues. We now discuss spatial data infrastructure as a major requirement for development, as has long been done with regards to other infrastructures such as roads, rail and waterways, electricity, and water supplies. Geographic information has been employed in several fields such as management of disasters, vehicle tracking systems, forestry, utilities management, oil exploration, environmental management, health management, census, and © 2005 by CRC Press LLC mineral resources development, governance (EIS Africa, 2002) and – the focus of this paper – coastal management. 14.1.1 Coastal Areas The coast is an area that witnesses a substantial amount of physical and economic activities. It is a zone of great significance in the sense that intense agriculture, business and recreational activities take place here. Settlements have been established in these areas and international trade and communication originated in the coastal fringes (Nwilo, 1995; Nwilo et al., 1995). The coastal zone houses about two thirds of the world’s population and this percentage is expected to increase to 75% by the year 2020 (UNEP, 1992; Hanson & Lindh, 1993). Most of the important cities of the world, such as Alexandria, Lagos, London, Rotterdam, Shanghai, Tokyo and Venice, are located within the coastal environment, while two thirds of the world’s cities having a population of over 2.5 million are within the coastal zone (Borrego, 1994). The coastal environment is very rich in both living and non-living resources. For example, a lot of crude oil and gas exploration and exploitation take place with the coast. Wetlands are known to be a very productive ecosystem. Most of these wetlands are located in the coastal areas. They are the sanctuaries to many global endangered species and also can assist in dampening the effect of flooding from normal sea flooding, storm surges and sea level rise. Fishes that are caught in the upwelling zone of the Canary Island coast are hatched within the mangrove ecosystem of the Niger Delta and later migrate to the upwelling area. Similar relationships are found in most of the world’s major fishing waters. The coast is therefore a very important zone. Having discussed the importance of the coastal areas, it is now necessary to define the ‘coastal zone.’ Bird (1967; 1985 & 1993) defines the coast as a zone of varying width including the shore and extending the crest of cliff, the head of a tidal estuary, or the solid ground that lies behind the coastal lagoon, dunes and swamps. Komar (1976) on the other hand defines the coastal zone to include the littoral zone and extending further inland to include the sea cliffs, any marine terraces, dune fields and so on; the seaward limit is limitless. For most studies the coastal zone refers to that zone that is affected by what happens on the sea and on land. The coast is therefore very important for the existence of human life. 14.1.2 Integrated Coastal Area Management Integrated Coastal Areas Management is defined as a dynamic process in which a coordinated strategy is developed and implemented for the allocation of environmental, socio-cultural and institutional resources to achieve the conservation and sustainable use of the coastal area (Coastal Area Management and Planning Network, 1989; Nwilo, 1995). Planning for sustainable resource management is based on weighing priorities, translating these priorities into policies and finally defining goals, identifying responsibilities for each step and establishing a time frame for action and review (Nwilo, 1995). There is no one © 2005 by CRC Press LLC ‘right’ way to manage coastal areas. However the design of a coastal management programme or policy for a nation or a region should take into consideration the legal instrument for the implementation of the program as well as the instrumental frame work for policy implementation (Emovon, 1991). In order to practice effective coastal management, planners need to understand the way the natural environment and human activities are interconnected to form a system. Key aspects of the system include the following information themes: i. Biological: This includes type and extent of ecosystem, primary productivity, specie diversity and abundance, nursery grounds and life cycles; ii. Physical: This includes topography, geology, temperature, salinity, nutrients, tides, sea level and current, meteorology, sediment types and distribution, flooding and erosion/ accretion; iii. Socio-economic: This includes human population distribution and growth, economic activities and land use; iv. Legal and Institutional: Land tenure system, resource use rights, relevant laws and regulations, responsible agencies and availability of financial and human resources (Borrego, 1994). Each of these activities is greatly influenced by activities within and beyond the coastal zone. It is for this reason that the resolution of conflicts in the use of coastal resources requires a broad perspective on the environmental process and interaction among human activities. 14.2 THE GUINEA CURRENT LARGE MARINE ECOSYSTEM PROJECT 14.2.1 The Concept of Large Marine Ecosystem Project Large Marine Ecosystems are regions of the ocean space encompassing coastal areas from river basins and estuaries to the seaward boundaries of the continental shelves, and the outer margins of the world’s current system. These marine regions are considered in terms of their ecological unity based on their distributive bathymetry, hydrographic, productivity, and trophic linkages (Sherman et al., 1993; UNIDO, 2002). The world’s 64 LMEs are the most productive ecosystems, and together produce 95% of marine fishery biomass yields. It is also in the LMEs that most of the global ocean pollution, fisheries over-exploitation and coastal habitat alteration take place. The LME ocean management approach focuses on the sustainable development of the ocean resources and requires a paradigm shift from a small spatial scale to a larger one and from a short-term to a long-term perspective. It requires countries bordering the LME to set priorities on how to tackle their common transboundary issues. Since the early 1990s, the developing countries have approached the Global Environment Facility (GEF), the United Nations Industrial Development Organisation (UNIDO) and other United Nation implementing agencies for technical and scientific assistance in restoring and © 2005 by CRC Press LLC protecting their coastal and marine ecosystem. GEF agreed to provide guidance and funding in addressing these issues within the framework of sustainable development. It recommended the use of the Large Marine Ecosystem (LME) concept and their contributing freshwater basins as the geographic focus for addressing the issues (UNIDO, 2002). 14.2.2 The Guinea Current Large Marine Ecosystem Project Implementation The Guinea Current Large Marine Ecosystem Project is funded by the Global Environment Facility (GEF) and managed by the United Nations Industrial Development Organisation (UNIDO). The phase I of this project was started in 1995 and ended in 1999 with the countries of Cameroon, Nigeria, Benin Republic, Togo, Ghana and Côte d’Ivoire participating. Apart from GEF and UNIDO, some form of scientific and technical support came from the United Nations Education and Scientific Cultural Organisation (UNESCO), other UN agencies, and the US National Oceanic and Atmospheric Administration (NOAA). The participating countries provided in country support in the form of logistics such as provision of offices and transportation vehicles. The execution of the project was in form of modules. The modules that were covered in the project included Integrated Coastal Areas Management (ICAM), Geographic Information System (GIS), Mangroves, Industrial Pollution, Policy Issues, Fisheries, Coastal Erosion, Plankton and other pollution. The structure made provision for a National Project Director in each of the participating countries and a National Expert for each of the modules. All the national experts were reporting to an International Expert who co-ordinated each of the modules. The project had a Project Coordinator who was based in Abidjan, Côte d’Ivoire. The office of the Project Coordinator also served as the Secretariat for the project. In each of the participating countries, there was a Focal Point Agency and Focal Point Institution. In Nigeria, the now-defunct Federal Environmental Protection Agency was the focal point agency, while the Nigerian Institute for Oceanography and Marine Research was the focal point institution. There were other participating institutions such as the University of Lagos. In the other participating countries, the focal point agency was the Ministry of Environment. Efforts were made in the project to collaborate with relevant institutions. The second phase of the project is bringing in an additional 10 countries. These include Guinea Bissau, Guinea, Sierra Leone, Liberia, Congo Brazzaville, Democratic Republic of Congo and Angola. These countries, in addition to the original six, are in partnership activities for sustainable development of the Guinea Current Large Marine Ecosystem (GCLME). The addition of these to the original six countries meant that the full extent of the Gulf of Guinea Current Large Marine Ecosystem is covered. This stage of the project will commence in January 2004 (UNIDO, 2002). All participating countries are making contributions to a Transboundary Diagnosis Programme (TAD) and a Strategic Action Programme (SAP) for the project (UNIDO, 2002). © 2005 by CRC Press LLC 14.2.3 The ICAM Module The essence of the Guinea Current Large Marine Ecosystem project is the sustainable management of the living resources of the Gulf of Guinea region. The region was experiencing a serious environmental stress due to urbanisation, pollution from industries and domestic wastes, population explosion, oil spillage, deforestation, erosion, and over-fishing. The fish stocks were depleting at a fast rate and the socio-economic lives of the inhabitants are adversely affected. The lagoons that dot the coast from Côte d’Ivoire to Nigeria had become heavily polluted. Most of the problems highlighted above are transboundary in nature. There was therefore a need to reverse the situation and address these problems from a regional perspective rather than from a national perspective. Under the module, an experienced ICAM professional prepared guidelines for implementation of ICAM in the countries. The National Experts prepared a country profile for each of the six participating countries in the first phase. The country profile is a baseline of the situation in each of the participating country’s coastal area. The information used in preparing the country profile was obtained from existing literature and from relevant institutions. This was followed by a three-day workshop where stakeholders discussed the profile and made recommendations where necessary. A final copy of the country profile was made after effecting the necessary corrections from stakeholders. An outcome of the workshop was the setting of the National Integrated Coastal Area Committee for each of the participating countries. Another success of the workshop and activities of the Guinea Current LME phase 1 is the creation of awareness on the importance of Integrated Coastal Area Management: prior to the Guinea Current LME project, there was no National ICAM Committee in any of the six participating countries. As part of the efforts to assess the health of the Guinea Current LME, a fish trawl survey was carried out from Côte d`Ivoire to Cameroon. Results from the survey confirmed the fear that the fish stock, together with the plankton, was being depleted. Figure 14.1 shows the Gulf of Guinea Region while Figure 14.2 shows the countries that took part in the first phase of the project © 2005 by CRC Press LLC ... - tailieumienphi.vn
nguon tai.lieu . vn