Xem mẫu

  1. Ch­¬ng 13. Nh÷ng Tr­êng hîp nghiªn cøu 13.1. Tæng quan Mét vµi tr­êng hîp nghiªn cøu giíi thiÖu trong ch­¬ng nµy ®Ó minh häa c¸c kü thuËt m« t¶ trong c¸c ch­¬ng tr­íc ®­îc sö dông vµ kÕt hîp ®Ó gi¶i quyÕt nh÷ng vÊn ®Ò thùc hµnh nh­ thÕ nµo. Ba vÝ dô sÏ tiªu biÓu cho c¸c lo¹i øng dông th­êng xuÊt hiÖn nhÊt. Nh÷ng vÝ dô ®· ®­îc ®¬n gi¶n vµ lý t­ëng hãa ®Ó minh häa nh÷ng ®iÓm chÝnh kÌm theo, kh«ng ®­a ra nh÷ng phøc t¹p ®Æc tr­ng t¹i tuyÕn th­êng xuÊt hiÖn trong nghiªn cøu thùc tÕ mµ cã thÓ ®ßi hái sù khÐo lÐo ®¸ng kÓ ®Ó v­ît qua. ViÖc sö dông c¸c nghiªn cøu thùc tÕ lµm cho viÖc m« t¶ mçi tr­êng hîp l©u h¬n mµ l¹i kh«ng ®­a ra thªm sù bæ sung s©u s¾c nµo. Nh÷ng tÝnh to¸n trong c¸c nghiªn cøu ®­îc tham chiÕu tíi nh÷ng ph­¬ng tr×nh vµ h×nh vÏ trong c¸c ch­¬ng næi bËt. Tuy nhiªn, ph­¬ng ph¸p thùc hiÖn ®¬n gi¶n nhÊt ®èi víi nhiÒu tÝnh to¸n lµ b»ng gãi phÇn mÒm SandCalc vµ nh÷ng b­íc cÇn thiÕt ®Ó thùc hiÖn ®iÒu nµy ®­îc m« t¶. Trong tÊt c¶ c¸c tr­êng hîp nghiªn cøu, ®Ó ®¬n gi¶n n­íc ®­îc lÊy ë nhiÖt ®é 10oC vµ ®é muèi 35 o/oo, vµ mËt ®é trÇm tÝch 2650 kgm-3 (gi¸ trÞ ngÇm ®Þnh trong SandCalc). Nh÷ng gi¸ trÞ kh¸c cã thÓ dÔ dµng sö dông th«ng qua c¸c menu 'Edit- Bed Material' vµ 'Edit- Water’ cña SandCalc, sö dông 'Derive’. Mçi tr­êng hîp nghiªn cøu bao gåm mét tËp hîp nhá nh÷ng b­íc ®­îc ph¸c th¶o trong 'Quy tr×nh Tæng qu¸t' (môc 1.5), bæ sung thªm nh÷ng quy tr×nh tr­êng hîp ®Æc tr­ng. 13.2. Sù æn ®Þnh cña viÖc chèng xãi Mét dµn s¶n xuÊt dÇu sÏ ®­îc l¾p ®Æt trong mét khu vùc khai th¸c dÇu ngoµi kh¬i cã ®é s©u 20 m t¹i mét vÞ trÝ cã ®¸y c¸t mÞn. T¸m ch©n ®Õ cña dµn c¾m s©u vµo ®¸y, cã mÆt c¾t ngang h×nh trßn, ®­êng kÝnh 2 m. §Ó xãi kh«ng xuÊt hiÖn, mét líp phñ b¶o vÖ b»ng ®¸ sÏ ®­îc ®Æt xung quanh c¸c ch©n. Ph¶i tÝnh to¸n kÝch th­íc ®¸ cÇn thiÕt ®Ó chèng l¹i nh÷ng h­ h¹i ®¸ng kÓ víi chu kú lÆp 50 n¨m (vÝ dô). Nh÷ng ®iÒu kiÖn sãng cña c¬n b·o 50 n¨m t¹i vÞ trÝ ®­îc chØ râ lµ Hs = 7 m. HiÖu øng dßng ch¶y thñy triÒu bá qua. Gi¶ thiÕt r»ng thiÖt h¹i ®¸ng kÓ sÏ xuÊt hiÖn nÕu 1/3 nh÷ng sãng cao nhÊt trong mét b¶n ghi sãng ®· cho cã kh¶ n¨ng dÞch chuyÓn c¸c khèi ®¸. Nh­ vËy ®iÒu kiÖn tíi h¹n t­¬ng øng (theo ®Þnh nghÜa Hs) víi nh÷ng sãng ®¬n víi ®é cao thiÕt kÕ H = 7 m. Chu kú sãng t­¬ng øng ®­îc lÊy lµ chu kú ®Ønh Tp, cña phæ. Sö dông nh÷ng ph­¬ng tr×nh (49) vµ (48), hoÆc SandCalc-Edit-Waves- 178
  2. Derive víi h = 20 m (trong Edit-Water), Hs = 7 m cho ta Tz = 9,3 s vµ Tp = 11,9 s. Sö dông lý thuyÕt sãng tuyÕn tÝnh cã thÓ tÝnh to¸n biªn ®é vËn tèc quü ®¹o ®¸y tõ ®­êng cong ®¬n ®iÖu trong h×nh 14, hoÆc b»ng viÖc sö dông SandCalc Hydrodynamics-Orbital Velocity-Monochromatic víi ®Çu vµo lµ ®é s©u n­íc = 20 m, ®é cao sãng = 7 m, chu kú = 11,9 s ®Ó cã ®­îc vËn tèc quü ®¹o sãng = 1,98 ms-1. Thùc nghiÖm bëi Sumer vµ nnk. (1992) cho thÊy r»ng øng suÊt tr­ît t¹i ®¸y do chuyÓn ®éng sãng xung quanh mét h×nh trô trßn th¼ng ®øng cã ®­êng kÝnh D cã hÖ sè khuÕch ®¹i, do vËn tèc dßng ch¶y t¨ng xung quanh h×nh trô theo mét hµm cña sè Keulegan -Carpenter KC. Trong tr­êng hîp ®ang xÐt, víi KC =Uw T / D = 1,98 x 11,9 / 2,0 = 11,9, hä nhËn ®­îc hÖ sè khuÕch ®¹i øng suÊt tr­ît t¹i ®¸y lµ 2,2. §iÒu nµy cã nghÜa lµ (xem ph­¬ng tr×nh (57)) hÖ sè khuÕch ®¹i lµm vËn tèc quü ®¹o t¨ng (2,2)1/2 = 1,48. Nh­ vËy vËn tèc quü ®¹o hiÖu qu¶ gÇn ch©n dµn lµ 1,48 x 1,98 = 2,94 ms-1. §o¸n tr­íc r»ng kÝch th­íc ®¸ yªu cÇu sÏ lín h¬n 10 mm, ®­êng kÝnh tíi h¹n dcr cã thÓ nhËn ®­îc tõ ph­¬ng tr×nh (79), víi Uw = 2,94 ms-1, T = 11,9 s, g = 9,81 ms- l vµ s = 2,58: 97,9 x 2,943,08  0,62m . d cr  11,91,08 9,812,58  12,08 Nh­ vËy ®¸ cã ®­êng kÝnh 0,62 m (khèi l­îng xÊp xØ =  x 0,623 x 2650/6 = 0,34 tÊn) sÏ kh«ng chÞu ®­îc h­ háng ®¸ng kÓ víi ®iÒu kiÖn b·o cã chu kú lÆp hiÕm h¬n 50 n¨m. Trªn thùc tÕ, v× hÖ sè vËn tèc xung quanh mét h×nh trô trßn gi¶m nhanh theo kho¶ng c¸ch kÓ tõ h×nh trô, mét lo¹i ®¸ h¬i nhá h¬n cã lÏ ®ñ. Nh÷ng yÕu tè bæ sung cã thÓ yªu cÇu cho nghiªn cøu ®Æc tr­ng bao gåm: • tÝnh to¸n dcr cho mét møc ®é chÆt chÏ h¬n cña thiÖt h¹i chÊp nhËn ®­îc, vÝ dô thiÖt h¹i do 1 % c¸c sãng cao nhÊt. §é cao sãng v­ît 1 % (xÊp xØ 1,5 Hs) cã thÓ tÝnh to¸n b»ng viÖc gi¶ thiÕt ph©n bè Rayleigh cho ®é cao sãng (xem CIRIA/CUR, 1991) • xÐt ®Õn nh÷ng c«ng tr×nh kh¸c, trong vïng l©n cËn ch©n dµn nh­ ®­êng èng hoÆc sù cã mÆt t¹m thêi cña thiÕt bÞ kÝch hoÆc cÇn cÈu nöa ch×m. HÖ sè vËn tèc tÝnh to¸n cho c¸c c«ng tr×nh kh¸c ®­îc nh©n víi hÖ sè (1,48) cho ch©n dµn khi tÝnh to¸n vËn tèc quü ®¹o hiÖu qu¶ • trong c¸c khu vùc cã dßng ch¶y m¹nh (vÝ dô phÝa Nam BiÓn B¾c), cã thÓ cÇn xÐt ®Õn nh÷ng hiÖu øng kÕt hîp cña sãng vµ dßng ch¶y b»ng c¸ch tÝnh to¸n øng suÊt tr­ît t¹i ®¸y cùc ®¹i b»ng ph­¬ng ph¸p m« t¶ trong môc 5.3. ViÖc tÝnh to¸n chu kú lÆp cña øng suÊt lµ mét bµi to¸n vÒ x¸c suÊt kÕt hîp, ®­îc m« t¶ trong môc 12.3 • mét líp läc cña vËt chÊt nhá h¬n th­êng ®Æt n»m d­íi líp ®¸ chÝnh, ®Ó ng¨n ngõa c¸t lät qua c¸c khe hë gi÷a nh÷ng t¶ng ®¸. H­íng dÉn Xãi ë nh÷ng c«ng tr×nh biÓn (Whitehouse, 1997) ®­a ra m« t¶ chi tiÕt nh÷ng ph­¬ng ph¸p chèng xãi. 179
  3. 13.3. X©m thùc trÇm tÝch t¹i c«ng tr×nh lÊy n­íc Mét c«ng tr×nh lÊy n­íc lµm m¸t cho mét nhµ m¸y ®iÖn ®­îc ®Æt ngoµi kh¬i trªn ®¸y biÓn cã c¸t. Ph¶i tÝnh to¸n l­îng trÇm tÝch hµng n¨m ®i vµo theo n­íc ®Ó ®Ò phßng vµ chuÈn bÞ mét bÓ l¾ng trÇm tÝch nÕu cÇn thiÕt ng¨n trÇm tÝch ®i vµo c«ng tr×nh. §é s©u n­íc trung b×nh t¹i vÞ trÝ c«ng tr×nh lÊy n­íc lµ 7 m, ®é cao cña t©m c«ng tr×nh lÊy n­íc lµ 3 m, ®é lín thuû triÒu lµ 2 m vµ ®¸y thuéc lo¹i c¸t mÞn ®­îc chän läc tèt víi d10 = 0,07 mm, d50 = 0,12 mm vµ d90 = 0,18mm. Dßng ch¶y thñy triÒu chiÕm ­u thÕ trong khu vùc víi vËn tèc dßng ch¶y cùc ®¹i khi triÒu yÕu lµ 0,4 ms-1 vµ 0,6 ms-1 khi triÒu c­êng. Sãng cã ®é cao Hs = 0,5 m víi tÇn suÊt 50%, Hs = 1,0 m víi tÇn suÊt 10% vµ Hs = 3 m víi tÇn suÊt 1%. H­íng sãng trung b×nh lµ 45o so víi h­íng dßng ch¶y. Nh÷ng hiÖu øng cña c¶ dßng ch¶y vµ sãng cã vÎ quan träng trong viÖc lµm cho trÇm tÝch ®i vµo tr¹ng th¸i l¬ löng vµ trong mét n¨m mét ph¹m vi réng cña nh÷ng tæ hîp sÏ xuÊt hiÖn. Víi môc ®Ých minh häa, sö dông mét gi¸ trÞ ®¬n cña sãng vµ dßng ch¶y, tøc lµ trung b×nh dßng ch¶y cùc ®¹i cña thñy triÒu U = 1/2(0,4 + 0,6) = 0,5 ms-1 vµ ®é cao sãng cã tÇn suÊt 10% lµ Hs= 1,0m. Chu kú sãng kh«ng cho, v× vËy nhËn ®­îc ®¸nh gi¸ nhê sö dông ph­¬ng tr×nh (49), cho ta Tz= 3,51. C«ng thøc sö dông cho ph©n bè nång ®é do kÕt hîp sãng vµ dßng ch¶y lµ ph­¬ng tr×nh (115 a-e), yªu cÇu ®Çu vµo lµ sãng ®¬n. Sãng ®¬n t­¬ng ®­¬ng ®èi víi môc ®Ých nµy lµ H = Hs/21/2 = 0,707 ms-1 vµ T = Tp = 1,28Tz = 4,50 s. Biªn ®é vËn tèc quü ®¹o ®¸y nhËn ®­îc tõ h×nh 14 (xem vÝ dô 4.2) lµ Uw = 0,225 ms-1. øng suÊt tr­ît cùc ®¹i vµ trung b×nh t¹i ®¸y nhËn ®­îc b»ng viÖc sö dông ph­¬ng ph¸p trong môc 5.3 víi hÖ sè 'DATA 13' tõ b¶ng 9, vµ sö dông ®é nh¸m liªn quan ®Õn h¹t z0 = d50/12 = 0,01 mm, nªn ta cã m = 0,285 N m-2 vµ max = 0,481 Nm-2. TiÕp theo, tÝnh to¸n kÝch th­íc h¹t trung vÞ cña trÇm tÝch l¬ löng nhê sö dông ph­¬ng ph¸p Van Rijn, ph­¬ng tr×nh (97). Ph­¬ng ph¸p nµy, thËt ra chØ dù ®Þnh cho dßng ch¶y, yªu cÇu øng suÊt tr­ît ma s¸t líp ®Öm ®èi víi dßng ch¶y cã thÓ tÝnh to¸n nhê sö dông ph­¬ng tr×nh (34) ®Ó cã T0s = 0,228 Nm-2, ng­ìng øng suÊt tr­ît t¹i ®¸y cã thÓ tÝnh to¸n tõ ph­¬ng tr×nh (76) ®Ó cho ta cr = 0,151 N m-2. Còng yªu cÇu d16 vµ d84, cã thÓ tÝnh to¸n b»ng néi suy log chuÈn (môc 2.2) gi÷a nh÷ng gi¸ trÞ ®· biÕt d10, d50, d90 ®Ó cã d16 = 0,0793 mm vµ d84 = 0,164 mm. Ph­¬ng tr×nh (97) cho kÝch th­íc h¹t l¬ löng trung vÞ, d50,s = 0,106 mm. VËn tèc ch×m l¾ng cña kÝch th­íc h¹t nµy do ph­¬ng tr×nh (102) ®­a ra, ws = 0,00633 ms-1. Nh÷ng ®¹i l­îng trªn cã thÓ sö dông trong ph­¬ng tr×nh (115), víi z = 3 m, cho ta nång ®é t¹i t©m c«ng tr×nh lÊy n­íc lµ C(z) = 6,38 x 10-6 theo thÓ tÝch, hoÆc 16,9 mgl-1 theo khèi l­îng. Nh÷ng tÝnh to¸n nµy cã thÓ thùc hiÖn b»ng c¸ch kh¸c nhê sö dông SandCalcc nh­ sau: h Edit-Water, cho h = 7 m d16, d84 Edit-Bed Material-Derive theo d10, d50, d90 H, T Edit-Waves-Derive, víi Hs =1,0 m 180
  4. Uw Hydrodynamics-Waves-Orbital velocity-Monochromatic m, max Hydrodynamics-Waves + Currents-Total Shear-stress-Soulsby Hydrodynamics-Currents-Skin-friction-Soulsby 0s Sediments-Threshold-Bed shear-stress-Soulsby 0s d50 Sediments-Suspension-Suspended Grain size-Van Rijn ws Sediments-Suspension-Settling velocity-Soulsby C(z) Sediments-Suspension-Concentration-Waves + Currents L­u ý r»ng: (a) kÝch th­íc h¹t l¬ löng ph¶i th« h¬n mét chót nÕu nh÷ng hiÖu øng sãng ®­îc kÓ ®Õn trong tÝnh to¸n, vÝ dô nÕu d50,s = d50,b = 0,12 mm, nã lµm gi¶m nång ®é chØ ®Õn 1,9 mgl-1 (b) ph­¬ng tr×nh sö dông ®Ó tÝnh to¸n ph©n bè nång ®é ®­îc thiÕt kÕ cho ®¸y ph¼ng, ®iÒu kiÖn dßng trÇm tÝch s¸t ®¸y, trong khi sö dông ®¸y cã vÎ h¬i gîn c¸t cho sãng vµ dßng ch¶y. §¸y gîn c¸t lµm t¨ng nång ®é t¹i z = 3 m. §Ó tÝnh to¸n x©m thùc trÇm tÝch hµng n¨m, cÇn bæ sung nh÷ng b­íc sau: • thùc hiÖn nh÷ng tÝnh to¸n trªn cho mçi tæ hîp ®iÒu kiÖn sãng vµ dßng ch¶y thñy triÒu xuÊt hiÖn trong mét n¨m ®iÓn h×nh, céng nång ®é lÊy träng sè theo tÇn sè xuÊt hiÖn cña chóng, sö dông c¸ch tiÕp cËn x¸c suÊt m« t¶ trong môc 12.3, nhËn ®­îc nång ®é trung b×nh n¨m • nh©n nång ®é trÇm tÝch trung b×nh hµng n¨m víi thÓ tÝch n­íc ®i qua c«ng tr×nh lÊy n­íc trong mét n¨m, ®Ó cã x©m thùc trÇm tÝch hµng n¨m. Nh÷ng nh©n tè bæ sung cã thÓ cÇn xÐt ®Õn bao gåm: • tÝnh to¸n rÊt nh¹y c¶m víi nhiÖt ®é n­íc, bëi v× ®é nhít gi¶m lµm cho vËn tèc ch×m l¾ng lín h¬n; mét sù t¨ng nhiÖt ®é tõ l0oC ®Õn 30oC lµm gi¶m nång ®é t¹i z = 3 m tõ 16,9 mgl-1 xuèng 0,20 mgl-1. • nÕu trÇm tÝch ®¸y ®­¬c cÊp phèi réng, cã thÓ bao gåm c¸c nhãm mÞn nh­ bïn vµ/ hoÆc nh÷ng nhãm kh«ng th« kh«ng l¬ löng, th× ph¶i sö dông ph­¬ng ph¸p ®Ò cËp ®Õn mét d¶i nhiÒu kÝch th­íc h¹t • nÕu chØ nh÷ng kÝch th­íc h¹t th« h¬n kÝch th­íc ®· cho liªn quan ®Õn sù vËn hµnh cña nhµ m¸y, (vÝ dô nÕu trÇm tÝch rÊt mÞn ®i th¼ng vµo), th× cÇn ph©n chia tÝnh to¸n víi c¸c kÝch th­íc h¹t • v× tÝnh nh¹y c¶m nµy, mét vµi ®o ®¹c nång ®é trÇm tÝch l¬ löng t¹i tuyÕn lµ qói gi¸ cho nh÷ng môc ®Ých hiÖu chØnh vµ kiÓm ®Þnh. Ngoµi nh÷ng nhµ m¸y ®iÖn, viÖc ng¨n ngõa x©m thùc trÇm tÝch lµ quan träng ®èi víi nh÷ng c«ng tr×nh lÊy n­íc cho c¸c nhµ m¸y läc dÇu vµ khö muèi. 13.4. Båi lÊp luång dÉn n¹o vÐt Mét luång dÉn ®Õn mét bÕn c¶ng sÏ ®­îc n¹o vÐt xuyªn qua mét vïng c¸t n«ng, vµ yªu cÇu tÝnh to¸n n¹o vÐt b¶o tr× hµng n¨m. Luång ®­îc ®Æt th¼ng gãc víi ®­êng 181
  5. bê, do vËy nh÷ng dßng ch¶y thñy triÒu b¨ng qua nã theo h­íng vu«ng gãc, h­íng sãng ­u thÕ lµ däc theo kªnh. §é s©u n­íc trung b×nh t¹Þ b·i n«ng lµ 5m vµ kªnh ®­îc n¹o vÐt tíi mét ®é s©u th«ng thuyÒn trung b×nh lµ 10 m víi m¸i h¬i dèc vµ chiÒu réng 100m t¹i phÇn s©u nhÊt. §é lín thñy triÒu lµ 2 m, dßng ch¶y thñy triÒu b»ng nhau khi triÒu lªn vµ triÒu xuèng víi vËn tèc cùc ®¹i 0,6 ms-1 khi triÒu yÕu vµ 1,0 ms-1 khi triÒu c­êng. Sãng cã tÇn suÊt 50% lµ Hs = 1,0 m vµ víi tÇn suÊt 10% lµ Hs = 2,5 m vµ 1% lµ Hs = 2,5 m. C¸t trªn n­íc n«ng ®­îc chän läc tèt, víi d10 = 0,1 mm, d50 = 0,2 mm, d90 = 0,3 mm. C¬ chÕ båi lÊp (ë d¹ng c¸c sè h¹ng ®¬n gi¶n) ®­îc t¹o ra mét phÇn bëi dßng ch¶y, vµ mét phÇn bëi sãng. Dßng ch¶y mang trÇm tÝch qua b·i n«ng vµ vµo trong luång, t¹i ®ã dßng ch¶y sÏ chËm h¬n (do tÝnh liªn tôc cña khèi l­îng) trong ®é s©u lín h¬n. Dßng ch¶y chËm h¬n mang Ýt trÇm tÝch h¬n ®i sang m¸i bªn kia cña luång, do ®ã cã sù båi tô rßng cña trÇm tÝch trong luång. Qu¸ tr×nh trÇm tÝch mang vµo nhiÒu h¬n lµ mang ra khái luång xuÊt hiÖn c¶ khi triÒu xuèng lÉn triÒu lªn, vµ sù ®èi xøng cña chóng cã nghÜa lµ kh«ng cã sù dÞch chuyÓn thùc tÕ cña luång. Sãng gi¶ thiÕt cã cïng ®é cao vµ chu kú trong luång còng nh­ ngoµi b·i n«ng (tøc lµ bá qua khóc x¹ ®Ó ®¬n gi¶n sù m« t¶). VËn tèc quü ®¹o sãng lµm t¨ng møc ®é vËn chuyÓn trÇm tÝch, nh­ng v× nh÷ng vËn tèc quü ®¹o trªn b·i n«ng lín h¬n so víi trong n­íc s©u h¬n cña luång, vËn chuyÓn trÇm tÝch trªn b·i n«ng lín h¬n. Nh­ vËy sãng kh«ng chØ lµm t¨ng, mµ cßn cñng cè c¬ chÕ båi lÊp do dßng ch¶y. §Ó minh häa, sÏ tÝnh to¸n møc båi lÊp ®èi víi mét vËn tèc dßng ch¶y vµ ®é cao sãng ®¬n. Nh÷ng gi¸ trÞ ®­îc chän lµ vËn tèc dßng ch¶y lín nhÊt cña thñy triÒu trung b×nh, U = 1/2 (0,6 + 1,0) = 0,80 ms-1 vµ ®é cao sãng Hs = 1,0 m víi tÇn suÊt 10%. Chu kú c¾t qua kh«ng ®· kh«ng cho, v× vËy nã ®­îc tÝnh to¸n tõ ph­¬ng tr×nh (49) lµ Tz = 3,51 s. §é s©u n­íc lÊy theo mùc n­íc trung b×nh, h = 5 m bªn ngoµi, vµ 10 m ë trong kªnh, v× biªn ®é thñy triÒu t­¬ng ®èi nhá. Tr­íc hÕt, tÝnh to¸n suÊt vËn chuyÓn trÇm tÝch qin, do kÕt hîp sãng vµ dßng ch¶y trªn n­íc n«ng, sö dông c«ng thøc Soulsby - Van Rijn (ph­¬ng tr×nh (136)). §¸y gi¶ thiÕt cã gîn c¸t víi z0 = 6 mm, vµ hÖ sè ma s¸t chØ do dßng ch¶y CD ®­îc tÝnh to¸n tõ ph­¬ng tr×nh (37) víi ®Çu vµo h = 5 m, z0 = 0,006 m, cho ta CD = 0,00488. VËn tèc quü ®¹o sãng RMS nhËn ®­îc tõ h×nh 14 nhê sö dông ®­êng cong JONSWAP (xem vÝ dô 4.3) víi ®Çu vµo Hs = 1,0m, Tz= 3,51 s, h = 5 m, cho ta Urms = 0,208 ms-1. Ng­ìng vËn tèc dßng ch¶y ®­îc tÝnh to¸n tõ ph­¬ng tr×nh (71) víi h = 5 m, d50 = 0,2 mm, d90 = 0,3 mm, cho ta Ucr = 0,391 ms-1. SuÊt vËn chuyÓn trÇm tÝch ®­îc tÝnh to¸n tõ ph­¬ng tr×nh (136) víi h = 5 m, U = 0,8 ms-1, CD = 0,00488, Urms = 0,208 ms-1, Ucr = 0,391 ms-1, J = 0 (®¸y n»m ngang), cho ta qt = l,838 x 10-4 m2s-1. B©y giê tÝnh to¸n suÊt vËn chuyÓn trÇm tÝch trong r·nh, cã h = 10 m. VËn tèc dßng ch¶y qua r·nh cã thÓ tÝnh to¸n tõ ph­¬ng tr×nh liªn tôc : U1h1 = U2h2, cho U = 0,8 x 5/10 = 0,4 ms-1. Mét lo¹t tÝnh to¸n gièng nh­ trªn n­íc n«ng, nh­ng sö dông h 182
  6. = 10 m, U = 0,4 ms-1 cho CD = 0,00388, Urms =0,083 ms-1, Ucr = 0,416 ms-1 vµ qt = 5,28 x 10-8 m2s-1. Nh÷ng tÝnh to¸n trªn, tr­íc hÕt qua n­íc n«ng vµ sau ®ã trong r·nh, cã thÓ thùc hiÖn b»ng c¸ch kh¸c nhê sö dông SandCalc nh­ sau. h Edit-Water, ®Æt h = 5 m Tz Edit-Waves-Derive, víi Hs = 1,0m CD Hydrodynamics-Currents-Total shear-stress-Logarithmic Urms Hydrodynamics-Waves-Orbital velocity-Spectrum Ucr Sediments-Threshold-Current-Van Rijn qt Sediments-Total load-Waves & Currents-Soulsby/ Van Rijn Trë l¹i Edit-Water, ®Æt h = 10 m, vµ lÆp l¹i tÝnh to¸n. SuÊt vËn chuyÓn trÇm tÝch rßng lµ 1,838 x 10-4 x 5,28 x 10-8 = 1,837 x 10-4 (vËn chuyÓn ra khái r·nh rÊt nhá trong tr­êng hîp nµy). TrÇm tÝch l¾ng ®äng trªn 100 m chiÒu réng cña r·nh, víi tèc ®é båi lÊp trung b×nh trªn giê, kÓ c¶ kh«ng gian xèp cña trÇm tÝch ®· l¾ng ®äng víi e = 0,40, lµ: (1,837 x 10-4 x 3600)/(100(1 - 0,40)) = 11 mm/h §iÒu nµy chØ x¶y ra khi dßng ch¶y thñy triÒu lín nhÊt, vµ tèc ®é båi lÊp vµo thêi ®iÓm thñy triÒu kh¸c sÏ Ýt h¬n nhiÒu, v× vËy tæng sè lÊy trung b×nh qua mét chu kú thñy triÒu sÏ nhá h¬n. §Ó tÝnh to¸n yªu cÇu n¹o vÐt b¶o tr× hµng n¨m, cÇn thiÕt bæ sung nh÷ng b­íc sau: • thùc hiÖn tÝnh to¸n nh­ trªn cho mçi tæ hîp ®iÒu kiÖn sãng vµ dßng ch¶y thñy triÒu xuÊt hiÖn trong mét n¨m ®iÓn h×nh, vµ lÊy tæng suÊt vËn chuyÓn trÇm tÝch cã träng sè theo tÇn sè xuÊt hiÖn cña chóng, sö dông c¸ch tiÕp cËn x¸c suÊt m« t¶ trong môc 12.3, nhËn ®­îc tèc ®é båi lÊp trung b×nh n¨m • thùc hiÖn nh÷ng tÝnh to¸n t¹i mét sè ®iÓm ®¹i diÖn däc theo kªnh, vµ céng l­îng trÇm tÝch cho tõng ®o¹n. Nh÷ng yÕu tè bæ sung cã thÓ quan träng trong tÝnh to¸n båi lÊp luång bao gåm: • khóc x¹ sãng trªn luång; d­íi nh÷ng ®iÒu kiÖn nhÊt ®Þnh, cã thÓ g©y ra 'néi ph¶n x¹ toµn bé' nh÷ng sãng ®Õn xiªn • sù lÖch nh÷ng dßng ch¶y ®Õn xiªn mét gãc, do hiÖu øng chËm l¹i khi dßng ch¶y c¾t qua luång • m¸i rÊt dèc cã thÓ g©y ra mét khu vùc bãng, hoÆc khu vùc hoµn l­u ng­îc, ®èi víi dßng ch¶y • trÇm tÝch l¬ löng cã thÓ mét phÇn ®­îc mang ngang qua luång mµ kh«ng l¾ng ®äng, ®Æc biÖt ®èi víi nh÷ng luång hÑp, nh÷ng trÇm tÝch mÞn, vµ nh÷ng dßng ch¶y nhanh, dÉn ®Õn sù gi¶m ‘hiÖu øng bÉy' • khi luång ®Çy lªn víi trÇm tÝch, vµ trë thµnh n«ng h¬n, hiÖu øng bÉy cña nã gi¶m, dÉn ®Õn sù gi¶m tèc ®é båi lÊp theo hµm mò 183
  7. • nh÷ng luång dÉn th­êng ®Çy bïn, còng nh­ c¸t, v× vËy yªu cÇu kü thuËt tÝnh to¸n kh¸c nhau. Nh÷ng nguyªn lý tæng quan bao hµm trong båi lÊp luång ®­îc bµn luËn bëi Lean (1980), vµ nh÷ng kü thuËt m« h×nh sè phøc t¹p cho tÝnh to¸n båi lÊp tiªn tiÕn h¬n ®­îc m« t¶ bëi Van Rijn (1985) vµ Miles (1995). Nh÷ng ph­¬ng ph¸p luËn m« t¶ trong tr­êng hîp nghiªn cøu nµy ®èi víi båi lÊp nh÷ng luång tµu réng cã thÓ ¸p dông cho sù båi lÊp c¸c hè ®µo réng kh¸c (vÝ dô nh÷ng èng tuynen ch×m trong n­íc vµ nh÷ng èng lÊy n­íc lµm m¸t), vµ cho nh÷ng r·nh hÑp t¹m thêi ®Ó ch«n nh÷ng èng dÉn, nh÷ng nguån th¶i vµ c¸p ngÇm. Nh÷ng nguyªn lý tæng quan cã thÓ øng dông theo h­íng ng­îc l¹i ®èi víi sù ph¸t t¸n c¸c ®èng ®Êt vµ c¸c ®èng trÇm tÝch d­íi n­íc. 184
  8. 185
  9. Tµi liÖu tham kh¶o 1. Abbott, M7B. and Price, W. A,, eds. (1994). Coastal. Estuarial and HarbourEngineers' Reference Book. E. & F. N. Spon, London. 2. Ackers, P. and White, W. R. (1973). Sediment transport: a new approach and analysis. Proc. ASCE, 99 (HY11), 2041-60. 3. Ashida, K. and Michiue, M. (1972). Study on hydraulic resistance and bedload transport rate in alluvial streams. JSCE, Tokyo, 206, 59-69. 4. Bagnold, R. A. (1963). Mechanics of marine sedimentation, in: The Sea: Ideas and Observations, vol. 3, ed. M. N. Hill, pp. 507-28, Wiley-Interscience, New York. 5. Bailard, J. A. (1981). An energetics total load sediment transport model for a plane sloping beach. J. Geophys. Res., 86, (Cll), 10938-54. 6. Barltrop, N. D. P. (1990). Revision to the UK DEn guidance notes, in: Water Wave Kinematics, eds A. Torum, and 0. T. Gudmestad, pp. 233-46. Kluwer Academic Publishers, Dordrecht. 7. Battjes, J. A. and Stive, M. J. F. (1985). Calibration and verification of a dissipation model of random breaking waves. J. Geophys. Res., 90, (C5), 9159-67. 8. Bettess, R. (1985). Sediment transport under waves and currents. Report No. SR 22, HR Wallingford. 9. BGS (1987). Sea Bed Sediments around the United Kingdom, 1:1,000,000 map (North sheet and South sheet). (Also at 1:250,000 scale for selected areas). British Geological Survey, Natural Environment Research Council. 10. Bijker, E. W. (1967). Some considerations about scales for coastal models with moveable bed. Publ. 50, Delft Hydraulics Lab. 11. Brampton, A. H. and Motyka, J. M. (1984). Modelling the plan shape of shingle beaches. POLYMODEL 7 Conf., Sunderland Polytechnic. UK. pp. 219-33. 12. BSI (1967). Methods of testing soils for civil engineering purposes, British Standard 1377: 1967. British-Standards Institution. 13. BSI (1986). British Standard specification for test sieves, British Standard BS410.-1986. British Standards Institution. 14. CERC (1984). Shore Protection Manual, vols I to 3. US Army Corps of Engineers. Coastal Engineering Research Centre, US Govt Pruning Office. 15. Chen, S. F., Chan, R. C., Read, S. M. and Bromley, L. A. (1973). Viscosity of seawater solutions. Desalination, 13, 37-51. 16. Chesher. T. J. and Miles. G. 5. (1992). The concept of a single representative wave, in: Hydraulic and Environmental Modelling: Coastal Waters, ed. R. A.Falconer, S. N. Chandler-Wilde, and S. Q. Liu, pp. 371-80. Ashgate, Brookfield, VT. 186
  10. 17. Christoffersen, J. B. and Jonsson, I. G. (1985). Bed friction and dissipation in a combined current and w^ve motion. Ocean Eng., 12(5), 387-423. 18. CIR5A/CUR (1991). Manual on the Use of Rock in Coastal and Shoreline Engineering. Construction Industry Research and Information Association, Special Publ. 83. 19. Colebrook, C. F. and White, C. M. (1937). Experiments with fluid friction in roughened pipes. Proc. Roy. Soc., Series A, 161, 367-81. 20. Crickmore, M. J. and Teal, C. J. (1981). Recent developments in pump samplers for the measurement of sand transport, in Erosion and Sediment Transport Measurement, Proc. Florence Symp., IAHS Publ. 133, pp. 123-30. 21. Crickmore, M. J., Tazioli, G. S., Appleby, P. G. and Oldfield, F. (1990). The use of nuclear techniques in sediment transport and sedimentation problems, Technical Documents in Hydrology, IHP-III Project 5.2 International Hydrological Programme, UNESCO, Paris. 22. Damgaard, J. S. and Soulsby, R. L. (1997). Longshore bed-load transport. Proc.25th Int. Conf. Coastal Eng., Orlando, 3, pp. 3614-3627. ASCE. 23. Davies, A. G., Soulsby, R. L. and King, H. L. (1988). A numerical model of the combined wave and current bottom boundary layer. J. Geophys. Res., 93 (Cl), 491-508. 24. Davies, A. G., Ribberink, J. S., Temperville, A. and Zyserman, J. A. (1997). Comparisons between sediment transport models and observations made in wave and current flows above plane beds. Coastal Eng., 31, 163-169. 25. Dawson, G. P., Johns, B. and Soulsby, R. L. (1983). A numerical model of shaUow-water flow over topography, in: Physical Oceanography of Coastal and Shelf Seas, ed. B. Johns, pp. 267-320. Elsevier, Amsterdam. 26. De Vriend, H. J. ed.-(1993)., Coastal morphodynamics processes and modelling. Special Issue, Coastal Eng., 21, (1-3). 27. De Vriend, H. J. (in preparation). Mathematical Modelling of Coastal Morphodynamics. World Scientific Publishing, Singapore, Advanced Series on Ocean Engineering. 28. Deigaard, R. (1998). Comparison between a detailed deterministic sediment transport model and the Bailard formula. Proc. Coastal Dynamics '97 Conf., University of Plymouth (to appear). 29. Deigaard, R., Bro Mikkelsen, M. and Fredsee, J. (1991). Measurements of the bed shear stress in a surf zone. Progress Report 73, Inst. Hydrodynamic and Hydraulic Eng., pp. 21-30. 30. Delo, E. A. and Ockenden, M. C. (1992). Estuarine Muds Manual. Report SR 309, HR Wallingford. 31. Den Adel, H. (1987). Re-analysis of permeability measurements using Forchheimefs equation. Repon CO-272550/56 (in Dutch). Delft Geotechnics. 187
  11. 32. Draper, L. (1991). Wave Climate Atlas of the British Isles. Dept of Energy, Offshore Technology Report OTH 89 303, HMSO, London. 33. Dyer, K. R. (1986). Coastal and Estuarine Sediment Dynamics. Wilev &. Sons, Chichester, UK. 34. Einstein, H. A. (1950). The bed-load function for sediment transportation in open channel flows. Techn. Bulletin 1026, US Dept of Agriculture. 35. Engelund, F. (1953). On the laminar and turbulent flow of ground water through homogeneous sand. Trans. Danish Academy of Technical Sciences, (3). 36. Engelund, F. (1966). Hydraulic resistance of alluvial streams. J. Hvdraul. D4., Am. Soc. C4. Eng., 92, (HY2), 315-26. 37. Engelund, F. and Freds0e, J. (1976). A sediment transport model for straight alluvial channels. Nordic Hydrology, 7, 293-306. 38. Engelund, F. and Hansen, E. (1972). A Monograph on Sediment Transport in Alluvial Streams, 3rd edn. Technical Press, Copenhagen. 39. Ergun, S. (1952). Fluid flow through packed columns. Chem. Eng. Progress, 48(2), 89-94. 40. Fisher, K. R. (1993). Manual of Sediment Transport in Rivers. Report SR 359, HR Wallingford. 41. Freds0e, J. (1984). Turbulent boundary layer in wave-current motion. J. Hydraul. Eng. ASCE, 110, 1103-20. 42. Fredsee, J. and Deigaard, R. (1992). Mechanics of Coastal Sediment Transport. World Scientific Publishing, Advanced Series on Ocean Engineering, vol. 3. 43. Fredsoe, J., Andersen, 0. H. and Silberg, S. (1985). Distribution of suspended sediment in large waves. J. Waterway, Port, Coastal and Ocean Eng. D4., ASCE, 111(6), 1041-59. 44. Garcia, M. and Parker, G (1991) Eritrainment of bed sediment into suspension. J. Hydr. D4., Proc. ASCE, 117(4), 414-35. 45. Gibbs, R. J., Matthews, M. D. and Link, D. A. (1971). The relationship between sphere size and settling velocity. Journal of Sedimentary Petrology, 41(1), 7- 18. 46. Graf, W. H. (1984). Hydraulics of Sediment Transport. Water Resour. Pybl. Littleton, CO, USA. 47. Grant, W. D. and Madsen, 0. S. (1979). Combined wave and current interaction with a rough bottom- J. Geophys. Res., 84(C4), 1797-1808. 48. Grant, W. D. and Madsen, 0. S. (1982). Movable bed roughness in unsteady oscillatory flow. J. Geophys. Res., 87(C1), 469-481. 49. Grass, A. J. (1981). Sediment transport by waves and currents. Rep. FL29, SERC London Cent. Mar. TechnoL, London, UK. 188
  12. 50. Guy, H. P., Simons, D. B. and Richardson, E. 5. (1966). Summary of alluvial data from flume experiments, 1956-1961. Prof. Paper 462-J, US Geological Survey. 51. Hallermeier, R. J. (1981). Terminal settling velocity of commonly occurring sand grains. Sedimentology, 28, 859-65. 52. Haugen, D. A., ed. (1973). Workshop on Micrometeorology. American Meteorological Society, Boston, MA, USA. 53. Horikawa, K., ed. (1988). Nearshore Dynamics and Coastal Processes. University of Tokyo Press. 54. HRS (1980). Design of seawalls allowing for wave overtopping. Report EX 924, Hydraulics Research Station, Wallingford. 55. Huynh-Thanh, S. and Temperville, A. (1991). A numerical model of the rough turbulent boundary layer in combined wave and current interaction, in Sand Transport in Rivers, Estuaries and the Sea, eds R. L. Soulsby and R. Bettess, pp. 93- 100. Balkema, Rotterdam. 56. IAHR/PIANC (1986). List of sea-state parameters. Supplement to Bulletin 52. International Association for Hydraulic Research. 57. Isobe, M. and Horikawa, K. (1982). Study on water particle velocities of shoaling and breaking waves. Coastal Eng. Jpn., 25, 109-23. 58. Jinchi, H. (1992). Application ofsandwave measurements in calculating bed load discharge, in Erosion and Sediment Transport Monitoring Programmes in River Basins, Proc. Oslo Symp. IAHS Publ. 210, pp. 63-70. 59. Johns, B., Soulsby, R. L. and Chesher, T. J. (1990). The modelling of sandwave evolution resulting from suspended and bed 4oad transport of sediment. J. Hydr. Res.. 28. 355-74. 60. Johns, B., Soulsby, R. L. and Jiuxing Xing (1993). A comparison of numerical model experiments of free surface flow over topography with flume and field observations. J. Hydr. Res, 31(2), 215-28. 61. Kamphuis, J. W. (1991). Alongshore sediment transport rate. J. Waterway, Port,Coastal and Ocean Eng. D4.. ASCE. 117(6), 624-40. 62. Kirkgoz, M. S. (1986). Particle velocity prediction at the transformation point of plunging breakers. Coastal Eng., 10, 139-47. 63. Koenders, M. A. (1985). Hydraulic criteria for niters, in Estuary Physics. Kew. 64. Komar, P. D. and Miller, M. C. (1974). Sediment threshold .under oscillatory water waves. J. Sediment. Peirol., 43, 1101-1110. 65. Kraus, N. C. and Horikawa, K. (1990). Nearshore sediment transport, in The Sea, vol. 9B: Ocean Engineering Science, eds B. Le Mehaute and D. Hanes, pp. 775- 814. Wiley, New York. 66. Latteux, B. (1996). Techniques for long-term morphological simulation under tidal action. Report 96NV00031, Electricite de France/Lab. National d'Hydraulique. 189
  13. 67. Lean, G. H. (1980). Estimation of Maintenance Dredging for Navigation Channels. Hydraulics Research Station, Wallingford, UK. 68. Madsen, 0. S. (1991). Mechanics of cohesionless sediment transport in coastal waters,-in Coastal Sediments '91s eds N-C Kraus, K. L Gingpnrh and D. L Kriebel, pp.l5-27.ASCE, New York. 69. Madsen, 0. S. and Grant, W. D. (1976). Sediment transport in the coastal environment. Report 209, M.I.T. Ralph M. Parsons Lab. 70. MAFF (1981). Atlas of the Seas Around the British Isles. Ministry of Agriculture, Fisheries and Food, Lowestoft. HMSO. 71. Meyer-Peter, E. and Muller, R. (1948). Formulas for bed-load transport. Rep. 2nd Meet. Int. Assoc. Hydrant. Struct. Res., Stockholm, pp. 39-64. 72. Miles, G. 5. (1981). Sediment Transport Models for Estuaries. Hydraulics Research Station, Wallingford, UK. 73. Miles, G. 5., Mead, C. T., Wild. B. R. and Ramsay, D. L. (1995). A study of methods for predicting sandy sedimentation in large dredged trenches or channels in estuaries and recommended practices. Report SR 410, HR Wallingford. 74. Mogridge, G. R., Davies, M. H. and Willis, D. H. (1994). Geometry prediction for wave-generated bedforms. Coastal Eng., 22, 255-86. 75. Muir-Wood, A. M. and Fleming, C. A. (1981). Coastal Hydraulics. 2nd edn. The MacMillan Press. 76. Myers, J. J., Holm, C. H. and McAllister, R. F. (1969). Handbook of Ocean and Underwater Engineering. McG raw-Hill Book Co., New York. 77. Myrhaug, D. (1989). A rational approach to wave friction coefficients for rough, smooth and transitional turbulent flow. Coastal Eng., 13. 11-21. 78. Myrhaug, D. (1995). Bottom friction beneath random waves. Coastal Eng.. 24, 259-73. ^ 79. Myrhaug, D. and Slaattelid, 0. H. (1990). A rational approach to wave- current friction coefficients for rough, smooth and transitional turbulent flow.Coastal Eng. ,14, 265-93. 80. Nairn. R. B. and Southeate, H. N. (1993). Deterministic profile modelling of nearshore processes. Part 2. Sediment transport and beach profile development. Coastal Eng. 19, 57-96. 81. Nielsen, P. (1979). Some basic concepts of wave sediment transport. Series Paper 20, Inst. of Hydrodynamics and Hydraulic Eng., ISVA, Tech. Un4. Denmark. 82. Nielsen, P. (1992). Coastal Bottom Boundary Layers and Sediment Transport. World Scientific Publishing, Singapore, Advanced Series on Ocean Engineering, vol. 4. 83. Nikuradse, J. (1933). Stromungsgesetze in rauhen Rohren. VDI Forschungsheft 361, Berlin. English translation as: Laws of flow in rough pipes. Natl. Advisory Comm. Aeronautics, Tech. Mem. 1292, Transl. 1950. 190
  14. 84. Ockenden, M. C. and Soulsby, R. L. (1994). Sediment transport by currents plus irregular waves. Report SR 376, HR Wallingford. 85. Ozasa, H. and Brampton, A. H. (1980). Mathematical modelling of beaches backed by seawalls. Coastal Eng., 4(1), 47-64. 86. Parker, G. and Kovacs, A. (19^3). Mynorca: a Pascal program for implementing the Kovacs-Parker vectorial bedload transport relation on arbitrarily sloping beds. Technical Memorandum M-233, University of Minnesota, St Anthony Falls Hydraulic Laboratory. 87. Pender, G., Meadows, P. S. and Tait, J. (1994). Biological impact on sediment processes in the coastal zone. Proc. Instn C4. Engrs Wat., Marit., & Energy, 106, 53-60. 88. Prandle, D. (1982a). The vertical structure of tidal currents. Geophys. Astrophys. Fluid Dynamics, 22, 29-49. 89. Prandle, D. (1982b). The vertical structure of tidal currents and other oscillatory flows. Continental Shelf Res., 1(2), 191-207. 90. Raudkivi, A. J. (1990). Loose Boundary Hydraulics, 3rd edn. Pergamon Press, Oxford. 91. Ribberink, J. S. and Al-Salem, A. (1991). Near-bed sediment transport and suspended sediment concentrations under waves. Preprints of Int. Symp. On the Transport of Suspended Sediments and its Mathematical Modelling, Florence, Italy, 2-5 September, 1991. 92. Shepard, F. P. (1963). Submarine Geology, 2nd edn. Harper & Row, London. 93. Shields, A. (1936). AnwenduTig-der Ahnlichkeits-Mechanik und-der Turbulenz- forschung auf die Geschiebebewegung. Preussische Versuchsanstalt fur Wasserbau und Schiffbau, vol. 26, Berlin. 94. Simm, J. D., Brampton, A. H., Beech, N. W. and Brooke, J. S. (1996). Beach Management Manual, Report 153. CIRIA, London. 95. Sleath, J. F. A. (1970). Wave-induced pressures in beds of sand. J. Hydraul. D4., Proc. ASCE, 96 (HY2), 367-78. 96. Sleath, J. F. A. (1978). Measurements of bed load in oscillatory flow. J. Waterw. Port Coastal Ocean Eng. D4., Proc. ASCE., 104 (WW3), 291-307. 97. Sleath, J. F. A. (1982). The suspension of sand by waves. J. Hydr. Res., 20, .439-52. 98. Sleath, J. F. A. (1984). Sea Bed Mechanics. Wiley, New York. 99. Smith, J. D. and McLean, S. R. (1977). Spatially averaged flow over a wavy surface. J. Geophys. Res., 82(12), 1735-46. 100. Soulsby, R. L. (1983). The bottom boundary layer of shelf seas, in Physical Oceanography of Coastal and Shelf Seas, ed. B. Johns, pp. 189-266. Elsevier, Amsterdam. 191
  15. 101. Soulsby, R. L. (1987a). Calculating bottom orbital velocity beneath waves. Coastal Eng., 11, 371-80. 102. Soulsby, R. L. (1987b). The relative contributions of waves and tidal currents to marine sediment transport. Report SR 125, HR Wallingford, UK. 103. Soulsby, R. L. (1990). Tidal-current boundary layers, in The Sea, vol. 9B, Ocean Engineering Science, eds B. LeMehaute and D. M. Hanes, Wiley, New York. 104. Soulsby, R. L. (1993). Modelling of coastal processes, in Proc. 1993 MAFF Conf. of River and Coastal Engineers, Loughborough, UK, pp. 111-118. Ministry of Agriculture, Fisheries and Food, London, UK. 105. Soulsby, R. L. (1994). Manual of Marine Sands. Report SR 351, HR Wallingford. 106. Soulsby, R. L. (1995a). Bed shear-stresses due to combined waves and currents, in Advances in Coastal Morphodynamics, ed. M. J. F. Stive, H. J. de Vriend, J. Fredsoe, L. Hamm, R. L. Soulsby, C. Teisson and J. C. Winterwerp, pp. 4- 20 to 4-23. Delft Hydraulics, Netherlands, 107. Soulsby, R. L. (19956). The "Bailard' sediment transport formula: comparison with data and models. Op. cit., pp. 2-48 to 2-53. 108. Soulsby, R. L. and Dyer, K. R. (1981). The form of the near-bed velocity profile in a tidal accelerating flow. /. Geophys. Res., 86, 8067-74. 109. Soulsby, R. L. and Smallman, J. 5. (1986). A direct method of calculating bottom orbital velocity under waves. Report SR 76, HR Wallingford. 110. Soulsby, R. L. and Wainwright, B. L. S. A. (1987). A criterion for the effect of suspended sediment on near-bottom velocity profiles. J. Hydraulic Res., 25(3), 341-55. 111. Soulsby, R. L. and Humphery, J. D. (1990). Field observations of wave- current interaction at the sea bed, in Water Wave Kinematics, eds A. Terum and 0. T. Gudmestad, pp. 413-428. Kluwer Academic Publishers, Dordrecht, 112. Soulsby, R. L. and Whitehouse, R. J. S. W. (1997). Threshold of sediment motion in coastal environments. Proc. Pacific Coasts and 'Ports '97 Conf., Christchurch, 1, pp. 149-54. University of Canterbury, New Zealand. 113. Soulsby, R. L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R. R. and Thomas, G. P. (1993); Wave-current interaction within and outside the bottom boundary layer. Coastal Eng., 21, 41-69. 114. Southgate, H. N. (1988). Aspects of computational efficiency in models of nearshore hydrodynamics, in Proc. Int. Conf. Computer Modelling in Ocean Engineering, Venice, ed. B. A. Schrefler and 0. C. Zienkiewicz, A. A. Balkema, Rotterdam. 115. Southgate, H. N. (1995a). Prediction of wave breaking processes at the coastline, in Potential Flow of Fluids, Advances in Fluid Mechanics, vol. 6. ed. M. Rahman.pp. 109-48. Computational Mechanics Publications, Southampton. 192
  16. 116. Southgate, H. N. (1995^). The effects of wave chronology on medium and long term coastal morphology. Coastal Eng., 26, 251-70. 117. Southgate, H. N. and Nairn, R. B. (1993). Deterministic profile modelling of nearshore processes. Part 1. Waves and Currents. Coastal Eng., 19, 27-56. 118. Stive, M. J. F., de Vriend, H. J., Fredsoe, J., Hamm, L., Soulsby, R. L., Teisson, C. and Winterwerp, J. C. (1995). Advances in Coastal Morphodynamics: An Overview of the G8 Coastal Morphodynamics Project 1992-1995. Delft Hydraulics, Netherlands. 119. Stride, A. H., ed. (1982). Offshore Tidal Sands. Processes and Deposits. Chapman & Hall, London. 120. Sumer, B. M., Freds0e, J. and Christiansen, N. (1992). Scour and vertical pile in waves. J. Waterway, Port, Coastal and Ocean Eng. D4., ASCE, 118(1), 15-31. 121. Swart, D. H. (1974). Offshore sediment transport and equilibrium beach profiles. Delft Hydraulics Lab., Publ. 131. 122. Raudkivi, A. J. (1988). The roughness height under waves. J. Hydr. Res., 26(5), 569-584. 123. Taylor, P. A. and Dyer, K. R. (1977). Theoretical models of flow near the bed and their implication for sediment transport, in The Sea, vol. 6, eds E. D. Goldberg, I. N- McCave, J. J. O'Brien and J. H. Steele, pp. 579-602. Wiley- Interscience, New York, NY. 124. Terzaghi, K- and Peck, R. B. (1967). Soil Mechanics in Engineering Practice, 2nd edn. Wiley, New York. 125. Tucker, M. J. (1991). Waves in Ocean Engineering: Measurement. Analysis and Interpretation. Ellis Horwood, New York. 126. Van Gent, M. R. A. (1993). Stationary and oscillatory flow through coarse porous media. Report No. 9J-9, Delft University of Technology, Faculty of Civil Engineering. 127. Van Rijn, L. C. (1984). Sediment transport: part I: bed load transport: part II: suspended load transport; part III: bed forms and alluvial roughness. J. Hydraul. D4. Proc. ASCE, 110 (HY10), 1431-56: (HY11)/1613-41: (HY12). 1733-54. 128. Van Rijn, L. C. (1985). Mathematical model for sedimentation of shipping channels. Proc. Int. Conf. Numerical and Hydraulic Modelling of Ports and Harbours, Birmingham, UK, pp. 181-6. BHRA, Cranfield, UK. 129. Van Rijn, L. C. (1989). Handbook Sediment Transport by Currents and Waves- Report H461, Delft Hydraulics. 130. Van Rijn, L. C. (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam. 131. Wang, S. and White, W. R. (1993). Alluvial resistance in the transition regime. J. Hydraul. Eng.. Proc. ASCE, 119 (HY6), 725-741. 193
  17. 132. Wen C. Y. and Yu,Y.H. (1966). Mechanics of fluidization. Fluid ParticleTechnology, Chemical Engineering Progress Symposium Series, 62(62), 100- 11. 133. White, W. R., Paris, E. and Bettess. R. (1980). The frictional characteristics of alluvial streams: a new approach. Proc. I6. C4. Eng., Part 2, 69, 737-50. 134. Whitehouse, R. J. S. (1993). Combined flow sand transport: Field measurements. Proc. 23rd Int. Conf. on Coasial Engineering. Venice, vol. 3, pp. 2542-2555. ASCE. 135. Whitehouse, R. J. S. (1995). Observations of the boundary layer characteristics and the suspension of sand at a tidal site. Continental Shelf Research. 15(13). 1549-67. 136. Whitehouse, R. J. S. (1997). Scour at marine structures. A manual for practical applications. Report SR 417. HR Wallingford. 137. Wilson, K. C. (1966). Bed-load transport at high shear-stress. J. Hydraul. D4.. ASCE, 92 (HY6), 49-59. 138. Wilson, K. C. (1989c). Mobile-bed friction at high shear stress. J. Hydraulic Eng., ASCE, 115(6), 825-30. 139. Wilson, K. C. (1989^). Friction of wave induced sheet now. Coastal Eng., 12. 371-79. 140. Yalin, M. S. (1963). An expression for bed-load transportation. Proc. ASCE, 89 (HY3). 141. Yalin, M. S. (1964). Geometrical properties of sand waves. J. Hydraul. D4., Proc. ASCE. 90 (HY5), 105-19. 142. Yalin, M. S. (1977). Mechanics of Sediment Transport. 2nd edn. Pergamon Press, Oxford. 143. Zanke, U. (1977). Berechnung der Sinkgeschwmdigkeiten von Sedimenten, Mitt. des Franzius-lnstituts fur Wasserbau. 46(243). Technical University. Hanover. 144. Zyserman. J. A. and Fredsee, J. (1994). Data analysis of bed concentration of' sediment. J Hydraul. Eng., ASCE, 120(9). 1021-42. 194
nguon tai.lieu . vn