Xem mẫu

  1. Bài tập Toán cho Vật Lý (Ôn thi Cao Học) Bµi 1 : X¸c ®Þnh dao ®éng tù do cña d©y h÷u h¹n, g¾n chÆt t¹i c¸c mót x = 0 vµ x 4 x (l  x ) (0  x  l) cßn vËn tèc = l, biÕt ®é lÖch ban ®Çu ®­îc cho bëi u(x,0) = l2 ban ®Çu b»ng 0. Gi¶i : Gäi u(x,t) lµ ®é lÖch cña thiÕt diÖn cã hoµnh ®é x ë thêi ®iÓm t.  2u  2u  a2 2 Ta cã ph­¬ng tr×nh dao ®éng cña d©y : (1) t 2 x Theo bµi ra, ta cã : 4 x l  x   u t 0  l2  ®iÒu kiÖn ban ®Çu :  (2)  u 0  x t 0  vµ ®iÒu kiÖn biªn : u x 0  0 u x l  0 (3) Theo lý thuyÕt, ta cã nghiÖm riªng cña ph­¬ng tr×nh (1) tho¶ m·n ®iÒu kiÖn biªn   kat kat kx (3) cã d¹ng : u(x,t) =  u k ( x, t )   (a k cos (4)  bk sin ). sin l l l k 1 k 1 Ta x¸c ®Þnh ak, bk sao cho u(x,t) tho¶ m·n ®iÒu kiÖn ban ®Çu (2)  kx 4 x (l  x ) Thay (4) vµo (2) : u t 0   a k sin (5)  l2 l k 1  ka kx u   bk (6) 0 sin t l l k 1 t 0 4 x (l  x ) Gi¶i (5) : NhËn thÊy ak lµ hÖ sè trong khai triÓn thµnh chuçi Fourier theo l2 hµm sin trong kho¶ng (0, l). kx råi lÊy tÝch ph©n 2 vÕ tõ 0  l ta cã : Nh©n 2 vÕ cña (5) víi sin l l l 2 kx kx 4 x (l  x ) (7)  ak sin l dx   l 2 sin l dx 0 0 kx 1  cos l l l l dx  a k  x  l sin kx  = a l kx VT =  a k sin 2 dx  a k  2 l 0 k k 2 l 2 2   0 0 l  VT = a k (8) 2
  2. l l kx  kx 4 dx   x 2 . sin VP = l. x. sin dx   l2 l l 0  0 l l l l2 l2 kx kx kx l Ta cã : I1 =  x. sin cos k dx    2 2 sin  .x. cos k k l o k l lo 0 l l l kx kx kx l2 2l 2 I2 =  x .sin dx    .x . cos  x. cos l dx k l o k 0 l 0 l3 2l 3 2l 3  I2 = - cos k  3 3 cos k  3 3 k k k 3 3 3 2l 3  4 l 2l l Nªn VP = 2  cos k  3 3 cos k  cos k  3 3  l  k k k k   2l 3 2l 3  4 VP = (9)  3 3  3 3 cos k  l2 k  k  Thay (8) (9) vµo (7) ta cã : 8 2l 3 ak = 3 . 3 3 (1  cos k ) l k nÕu k  2n 0 16  = 3 3 (1  cos k )   (n=0,1,2...) 32 k nÕu k  2n  1  2n  13  3  Tõ (6)  bk = 0 do ®ã, nghiÖm cña bµi to¸n ®· cho : 32  (2n  1)at (2n  1)x 1 3 u(x,t) = . cos sin 3  n 0 2n  1 l l Bµi 2 : X¸c ®Þnh dao ®éng tù do cña d©y h÷u h¹n, g¾n chÆt t¹i c¸c mót x= 0 x = 1 biÕt ®é lÖch ban ®Çu b»ng 0, vËn tèc ban ®Çu ®­îc cho bëi : v0 cos( x  c) nÕu x  c  /2 u ( x,0)   t 0 nÕu x  c  /2 víi v0 lµ h»ng sè d­¬ng vµ /2  c  l - /2. Gi¶i : Gäi u(x,t) lµ ®é lÖch cña d©y cã hoµnh ®é x ë thêi ®iÓm t .Ta cã ph­¬ng tr×nh  2u 2 2 u trong miÒn (0
  3. u t 0  0  (0 x l) (3) v cos x  c  nÕu x  c  /2  u  0   t t 0 0 nÕu x  c  /2 T­¬ng tù bµi 1) ta cã nghiÖm cña ph­¬ng tr×nh (1) tho¶ m·n ®iÒu kiÖn biªn (2) :  ka ka  kx  a u(x,t) = (4) t  bk sin cos t  sin k l l l  k 1  kx Tõ ®iÒu kiÖn ban ®Çu ta cã : u t  0   a k sin (5)  0  ak  0 l k 1  ka kx u  F x    bk sin t t 0 k 1 l l NhËn thÊy bk lµ hÖ sè trong khai triÓn F(x) thµnh chuçi Fourier theo hµm sin trong l l ka 2 kx kx  sin l dx   F x sin l dx kho¶ng (0, l)  bk l0 0 c  / 2 kx 2vo  bk   / 2 cos( x  c) sin l dx ka c  v0 c  / 2  k c  / 2   k    =  1.x  c  dx   sin   1.x  c  dx    sin  ka c  / 2  l  l     c  / 2   c  / 2 c  / 2 v0   1   k  k   1     =  1 x  c    1 x  c  cos  cos   k   c  / 2 k  1  l ka   l    c  / 2  1 l  l     v0   1     k    k     =  1 c    c   cos   1 c    c    cos   k ka  l 2   l 2    1    l    1   k       k     1 c    c   cos  1 c    c   cos  k l 2   l 2    1     l  v0  1   kc k 2    kc k 2    = cos    cos  l  2l  2       2  ka  k l 2l    1 l    kc k 2     1   kc k 2    cos  l  2l  2   cos l  2l  2        k 1       l 
  4.   v 0  1   kc k 2    kc k 2 1   kc k 2  kc k 2      sin    sin    sin    sin      l  2l  l  2l  l  2l  l  2l      ka  k k 1      1       l  l     v0  1 1 k 2 2 =  4v 0 . 2 1 sin . kc cos k kc =   2 sin cos  ka k  2 ka  k k l 2l l 2l  1 1 1 l  2 l   l 2 4v 0 kc k  bk = . sin . cos 22 l 2l  k  ka1  2   l   Do ®ã nghiÖm cña bµi to¸n ®· cho lµ : k 2 kc sin . cos  u(x,t) = 4v 0 . 2l sin kat sin kx . l 22 a l l  k  k 1 k 1  2    l  Bµi 3 : X¸c ®Þnh dao ®éng däc cña thanh nÕu 1 mót g¾n chÆt cßn 1 mót tù do, biÕt u c¸c ®iÒu kiÖn ban ®Çu : u t  0  f ( x) ,  F ( x) t t 0 Gi¶i : Gäi u(x,t) lµ ®é lÖch cña thiÕt diÖn cã hoµnh ®é x ë thêi ®iÓm t  2u  2u  a2 2  Ph­¬ng tr×nh : (1) t 2 x u Tho¶ m·n ®iÒu kiÖn ®Çu : u t  0  f ( x) , (2)  F ( x) t t 0 u Tho¶ m·n ®iÒu kiÖn biªn : u x 0  0 , (3) 0 x x l NghiÖm cña ph­¬ng tr×nh cã d¹ng : U(x,t) = X(x).T(t) (4)  X " X  0 (5) Tõ (1) vµ (4) ta cã :  2 T " a T  0 ( 6) Tõ (3)&(4)  X(0) = 0 ; X’(l) = 0 (7) Gi¶i (5) : *  = - c2  X(x) = c1.e-cx + c2.ecx nªn theo (7) : X(x) = c1 + c2 = 0 c1 + c2 = 0 c1 = 0 X’(l) = -c.c1.e-cl + c.c2.ecl = 0 c2.ecl – c1e-cl = 0   c2 = 0 (lo¹i)
  5.  X 0   c1  0 *  = 0  X(x) = c1 + c2x  Theo (7) :  (lo¹i)  X ' l   c 2  0 *  = c2  X(x) = c1cos cx + c2sin cx  X (0)  c1  0 Tõ (7)    X ' (l )  c2 c cos cl  0 2k  1   =  2k  1  2  §Ó c2 = Ak  cos cl = 0  cl   k  c   2 2l 2l   NghiÖm cña ph­¬ng tr×nh (5) tho¶ m·n ®iÒu kiÖn biªn (7) lµ : 2k  1x X k  x   Ak sin 2l 2k  1at  D 2k  1at Tk t   Bk Gi¶i (6) : cos sin k 2l 2l Nªn nghiÖm riªng cña ph­¬ng tr×nh (1) lµ : 2k  1at  b sin 2k  1at  sin 2k  1x   u ( x, t )    ak cos (8)  k 2l 2l 2l k 0   2k  1x  f ( x)  Tõ (2) ta cã : u t 0   a k sin (9) 2l k 0 2k  1a sin 2k  1x  F ( x)  u   bk (10) t t 0 k 0 2l 2l NhËn thÊy ak lµ hÖ sè trong khai triÓn chuçi Fourier  nh©n 2 vÕ cña (8) víi 2k  1x nªn : l 2k  1x dx  l 2k  1x dx a k  sin 2 sin  f ( x) sin 2l 2l 2l o o l 2k  1x dx  a k  x  l sin 2k  1x   a k l al  k  1  cos 2  2 o  2k  1 l l 2    0 l 2k  1x dx 2  a k   f ( x) sin (11) lo 2l 2k  1a l sin 2 2k  1x  l F ( x) sin 2k  1x dx (10)  bk   2l 2l 2l o o 2k  1a l 1  cos 2k  1x dx  b a 2k  1  bk   F ( x)  k 2l 2l 4   o l 2k  1x 4  bk  (12)  F ( x) sin 2l dx 2k  1a o VËy (8) lµ nghiÖm cña bµi to¸n trong ®ã ak vµ bk ®­îc x¸c ®Þnh tõ (11),(12) Bµi 4 : Còng nh­ bµi 3 nh­ng c¶ 2 mót ®Òu tù do
  6. Gi¶i :  2u  2u  a2 2 Ta cã ph­¬ng tr×nh dao ®éng cña d©y (1) t 2 x u Tho¶ m·n ®iÒu kiÖn ®Çu : u t  0  f ( x) , (2)  F ( x) t t 0 u Tho¶ m·n ®iÒu kiÖn biªn : u x 0  0 , (3) 0 x x l NghiÖm cña (1) cã d¹ng : U(x,t) = X(x).T(t)  X " X  0 ( 4)  Nªn  '' 2 T  a T  0 (5) Gi¶i(4) :  u  c  c1  c  c 2  0  x c1  0 * =-c2  X(x)= c1.e-cx+c2.ecx   x 0   c 2  0  u  c  c1  e cl  c  c 2  e cl  0  x  x l  u  c  c1  c  c 2  0  x c 2  0 *  = 0  X(x) = c1.x + c2   x 0   c1  0  u  c  c1  c  c 2  0  x  x l  c2 = A0 øng víi trÞ riªng  = 0 th× ta cã hµm riªng t­¬ng øng X0(x) = A0  (5) cã nghiÖm : T0(t) = B0.t + D0  u0(x,t) = a0 + b0t  b0  A0 B0    a  A D  0 0 0 u *  =c2  X(x) = c1cos cx + sin cx  c.c 2  0 x x 0 u  c.c1 . sin cl  0 x x l k §Ó cã nghiÖm kh«ng tÇm th­êng th× sin cl = 0  cl = k  c = khi ®ã l kx c1=Ak nªn X ( x)  Ak cos l kat kat vµ T (t )  B k cos  Dk sin l l do ®ã nghiÖm riªng cña ph­¬ng tr×nh (1) : kat kat  kx  u k x, t    a k cos  bk sin  cos l l l 
  7.  kat kat  kx  nghiÖm cña pt (1) : u ( x, t )  a 0  b0 t    a k cos  bk sin  cos  l l l  k 1  kx Tõ (2)  u t  0  a 0   a k cos (6)  f ( x) l k 0  ka kx u  b0   bk (7)  F ( x) cos t t 0 l l k 0 ka NhËn thÊy a0, ak vµ b0, bk lµ c¸c h»ng sè trong khai triÓn f(x),F(x) thµnh chuçi l Fourier theo hµm cosin trong kho¶ng (0,l). l l l kx Tõ (6)   a 0 dx   a k cos dx   f ( x)dx l 0 0 0 l l l ka kx (7)   b0 dx   bk dx   F ( x)dx cos l l 0 0 0 u 0  x,0   f ( x) V× u0(x,t) lµ 1 nghiÖm riªng cña (1) nªn  u 0   t  x,0   F ( x)  l l l 1   a 0 dx   f ( x)dx  a0  (8) l f ( x )dx 0 0 0 l l l 1 (9)  b0 dx   F ( x)dx b0  l  F ( x)dx 0 0 0 u k  x,0  f x   T­¬ng tù uk(x,t) lµ nghiÖm riªng cña (1)   u k  t  x,0  F ( x )  l l l kx kx kx 2   a k cos 2 dx  a k   f ( x) cos (10) dx   f ( x ) cos dx x x l0 l 0 0 l l l ka kx kx kx 2 cos 2 (11)  bk dx   F ( x ) cos  F ( x) cos l dx dx  bk  ka 0 l l l 0 0 VËy nghiÖm cña bµi to¸n :  kat kat  kx  a  u(x,t) = a0 + b0t + .  bk sin cos  cos k l l l  k 1 Trong ®ã : a0, b0 , ak , bk ®­îc x¸c ®Þnh bëi (8) , (19) , (10) , (11) Bµi 5 : Mét thanh ®ång chÊt cã ®é dµi 2l bÞ nÐn cho nªn ®é dµi cña nã cßn l¹i lµ 2l(1-). Lóc t = 0, ng­êi ta bu«ng ra. Chøng minh r»ng ®é lÖch cña thiÕt diÖn cã hoµnh ®é x ë thêi ®iÓm t ®­îc cho bëi:
  8. 8l  (1) n1 (2n  1)x (2n  1)at 2 nÕu gèc hoµnh ®é ®Æt ë t©m cña u ( x, t )  sin cos 2  n 0 (2n  1) l l thanh. Gi¶i: Chän hÖ trôc to¹ ®é cã gèc trïng víi t©m cña thanh . Trôc ox däc theo thanh Theo bµi ra, thanh ®ång chÊt cã ®é dµi 2l bÞ nÐn th× ®é dµi cßn l¹i cña nã lµ 2l(1-) Do ®ã khi trôc dÞch chuyÓn 1 ®o¹n lµ x th× thanh bÞ nÐn x(1-)  ®é lÖch u(x,0) = x(1-) – x = - x Gäi u(x,t) lµ ®é lÖch cña mÆt c¾t x ë thêi ®iÓm t XÐt tiÕt diÖn cã hoµnh ®é x, do thanh ®ång chÊt nªn ë thêi ®iÓm t nã bÞ nÐn ®Õn vÞ trÝ x(1 - ) vµ cã ®é lÖch u(x,0) = - .x = f(x).  2u  2u  a2 2 Ph­¬ng tr×nh dao ®éng cña thanh : (1) t 2 x Theo bµi ra, t¹i thêi ®iÓm t = 0 ng­êi ta bu«ng ra tøc vËn tèc ban ®Çu = 0 chøng tá hai ®Çu mót cña thanh ®Òu tù do u u  ta cã ®iÒu kiÖn biªn :  0; (2) 0 x x x 0 x l u vµ ®iÒu kiÖn ban ®Çu : u t  0   .x  f ( x ) ; (3) 0 t t 0 T×m nghiÖm cña ph­¬ng tr×nh (1) d­íi d¹ng u(x,t) = X(x).T(t) (4)  X "  x   X ( x )  0 (5) Tõ (4) vµ (1) ta cã :  T " t   a T (t )  0 2 ( 6) B©y giê ta ®i t×m nghiÖm cña ph­¬ng tr×nh (5) tho¶ m·n ®iÒu kiÖn : X’(-l) = 0 ; X’(l) = 0 (7) rx Gi¶i (5) : §Æt X = e ta cã ph­¬ng tr×nh ®Æc tr­ng cña (5) : r2 +  = 0   = -c2  X(x) = c1e-cx + c2ecx Tõ (7)  c1 = c 2 = 0 (lo¹i)   = 0  X(x) = c1x + c2  X ' (l )  c1  0  c2  0 vµ c2 = A0 Theo (7) :   X ' (l )  c1  0 Nªn X0(x) = A0 øng víi trÞ riªng  = 0 th× (6) cã nghiÖm : T0(t) = B0t + D0 nªn ta cã nghiÖm riªng cña (1) u0(x,t) = a0 + b0t (a0 = A0D0; b0= A0B0) (8)   = c2  X(x) = c1cos cx + c2sin cx Theo (7) :
  9.  u  c1cc sin( cl )  cc 2 cos(cl )  0  x c1 sin cl  c 2 cos cl  0 c1 sin cl  0  x  l     c1 sin cl  c 2 cos cl  0 c 2 cos cl  0  u  cc1c sin( cl )  cc 2 cos(cl )  0  x  xl §Ó (4) cã nghiÖm kh«ng tÇm th­êng th× sincl = 0 hoÆc coscl = 0 k + XÐt sincl = 0  cl = k  c = vµ c1 = Ak l kx  ph­¬ng tr×nh (5) cã nghiÖ m : X k x   Ak sin l 2 k  øng víi    k    ph­¬ng tr×nh (6) cã nghiÖm tæng qu¸t :  l kat kat Tk t   Bk cos  Dk sin l l  Ta cã nghiÖm riªng cña (1) tho¶ m·n ®iÒu kiÖn biªn (2) : a k  Ak B k kat kat  kx  uk  x, t    ak cos (9)  bk sin  cos  bk  Ak Dk l l l  (2n  1) (2n  1) + XÐt coscl = 0  cl   c 2 2l 2n  1at  D sin 2n  1at (2n  1)x  X n x   An sin vµ Tn t   Bn cos n 2l 2l 2l Nªn nghiÖm riªng cña (1) tho¶ m·n ®iÒu kiÖn biªn (2) : (2n  1)x a n  An Bn (2n  1)at (2n  1)at   un x, t    an cos (10)  bn sin  sin   bn  An Dn 2l 2l 2l   Tõ (8),(9),(10) ta cã nghiÖm cña ph­¬ng tr×nh (1) tho¶ m·n ®iÒu kiÖn biªn (2) chÝnh lµ tæng cña c¸c nghiÖm riªng cña u(x,t) :  kat kat  kx  u ( x, t )  a 0  b0 t    a k cos  bk sin   cos l l l k 1  2n  1at  b sin 2n  1at  sin 2n  1 x      a n cos  n 2l 2l 2l n 0   Tõ ®iÒu kiÖn ban ®Çu (3) :  kx  (2n  1)x u t  0  a 0   a k cos   a n sin (11)   .x l 2l k 1 n 0  kx  ka (2n  1)a (2n  1)x u  b0     bn (12) 0 bk cos sin t k 1 l l 2l 2l n 0 t 0 Tõ (12)  b0 = bk = bn = 0 (13) LÊy tÝch ph©n 2 vÕ cña (11) theo x cËn tõ (-l  l) l l l l kx (2n  1)x l a0 dx  l ak cos l dx  l an sin 2l dx  l  .xdx 
  10. v× b0 = 0  u0(x,t) = a0 v× u0(x,t) lµ 1 nghiÖm riªng nªn u0(x,o) = -x l l  a0 = -x  lÊy tÝch ph©n 2 vÕ  a 0 dx    xdx l l l x2 22 l  a0 x l  2a0l = (l - l ) = 0  a0 = 0 (14)   2 2 l kat kx v× bk = 0  uk(x,t) = akcos cos l l v× uk(x,t) lµ 1 nghiÖm riªng cña (1) nªn uk(x,0) = - x kx vµ lÊy tÝch ph©n 2 vÕ cËn tõ (-l  l) Nh©n 2 vÕ víi cos l l l kx kx 2 dx    . x cos  a k cos dx l l l l l l a a k 2x k 2  l VT =  k (1  cos )dx  k  x   ak l sin l  l 2k 2 l 2  l l l l kx kx kx l l VP =    x. cos dx =   x sin l sin l dx k k  l l l l l 2 2 kx l l cos k  cos k   0  a k (15)   0 cos 2 2 k 2 2 k l l 2n  1at sin 2n  1x V× bn = 0  u n x, t   a n cos 2l 2l V× un(x,t) lµ 1 nghiÖm riªng cña (1) nªn un(x,0) = - .x l l (2n  1)x (2n  1)x 2   a n sin dx    .x sin dx 2l 2l l l l l an  (2n  1)x  a (2n  1)x  l  VT = n l 1  cos 2l dx  2  x  (2n  1) sin 2l  2     l   an l l l  (2n  1) sin( 2n  1)  l  (2n  1) sin( 2n  1)   2   l 2n  1x dx  x sin 2l l
  11. => VT = an.l VP = l l (2n  1)x (2n  1)x 2l 2l  VP    x cos l cos 2l dx (2n  1) (2n  1)  2l l l 4l 2 (2n  1) (2n  1)  (2n  1)x 2l    l cos  l cos  (2n  1) 2  2 sin  (2n  1) 2 2 2l   l 4l 2 8l 2  (2n  1) (2n  1)  (2n  1)   sin  sin  (2n  1) 2  2 sin  (2n  1) 2  2 2 2 2   8l 2  VP =  1n (2n  1) 2  2  8. .l 2 8. .l n 1 (1) n  a n   1  an  l  (16) (2n  1) 2  2 22 (2n  1)  Tõ (14), (15), (16) ta cã nghiÖm cña (1) : 8. .l  (1) n1 (2n  1)at (2n  1)x 2 u ( x, t )  cos sin 2  n 0 (2n  1) 2l 2l Bµi 6 : B»ng ph­¬ng ph¸p t¸ch biÕn, t×m nghiÖm cña ph­¬ng tr×nh :  2u  4u  a 2 4  0 tho¶ m·n c¸c ®iÒu kiÖn biªn vµ ®iÒu kiÖn ban ®Çu sau : t 2 x u x  0  0  u x l  0 u t  0  Ax(l  x ) 2   u ; 0  u 2 0  x x 0  t  2 t 0  u 0  x 2  x l Gi¶i :  2u  4u  a2 4  0 Ta t×m nghiÖm cña ph­¬ng tr×nh : (1) t 2 x
  12. u x 0  0  u x l  0 2 tho¶ m·n c¸c ®iÒu kiÖn biªn :   u  0 (2) 2  x x 0 2  u 0  x 2  x l u t  0  Ax(l  x )  vµ ®iÒu kiÖn ban ®Çu :  u (3) 0  t  t 0 d­íi d¹ng : u(x,t) = X(x).T(t) (4) Thay (4) vµo (1) : T”(t).X(x) + a2X(4)(x).T(t) = 0 X ( 4 ) ( x) T " (t )     a 2T (t ) X ( x) T " (t )  a 2T (t )  0 (5)   ( 4)  (6)  X ( x )  X ( x)  0   X (0)  X (l )  0 Tõ (2) vµ (4) ta cã :  (7)  X " (0)  X " (l )  0 Gi¶i (6) : §Æt X(x) = erx th× ph­¬ng tr×nh (6)  r4 –  = 0  r4 =  *NÕu  = 0  X(4)(x) = 0  X(x) = c1x3 + c2x2 + c3x + c4 Nªn tõ (7) ta cã :  X ( 0)  c 4  0  2  X (l )  l (c1l  c 2 l  c3 )  0  c1 = c2 = c3 = c4 = 0   X " ( 0)  2c 2  0  X " (l )  6c1l  0  * NÕu  < 0  r4 =  < 0 : ph­¬ng tr×nh v« nghiÖm * NÕu  > 0  r4 =  : ph­¬ng tr×nh cã 4 nghiÖm : r1  4  ; r2   4  ; r3  i.4  ; r4  i.4  §Æt   4  th× nghiÖm tæng qu¸t cña ph­¬ng tr×nh (6) :
  13. X  x   c1e  x  c 2 e x  c3 cos  x  c 4 sin  x  X '  x     c1e  x   c 2 e x   c 3 sin  x   c 4 cos  x X " ( x)   2 c1e  x   2 c 2 e x   2 c3 cos x   2 c 4 sin  x Tõ (7) ta cã hÖ 4 ph­¬ng tr×nh : X(0)  c1  c 2  c 3  0  l l  X (l )  c1e  c 2 e  c3 cos cl  c 4 sin cl  0  2 2 2  X " (0)   c1   c 2   c 3  0  X " (l )   2 c e l   2 c el   2 c cos cl   2 c sin cl  0  1 2 3 4 c1  c 2  c3  0  c 4  sin cl  0 4 k k   =   (k = 1,2 ...) §Ó c4  0  sin cl = 0  c =  l l kx X k  x   Ak sin  ph­¬ng tr×nh (6) cã nghiÖm : (8) l 4 k 2 2 a 2 k Thay  =   vµo ph­¬ng tr×nh (5) : T " t   T t   0  l2 l k 2 2 at k 2 2 at  Tk t   Bk cos (9)  Dk sin l2 l2 Thay (8), (9) vµo (4) ta cã : k 2 2 at k 2 2 at    kx u ( x, t )    a k cos (10)  sin  bk sin   2 2 l l l k 1   Víi ak = Ak.Bk ; bk = Ak.Dk Tõ ®iÒu kiÖn ban ®Çu (3) :  kx u t  0   a k sin (11)  Ax(l  x) l k 1 k 2 2 a  kx u   bk (12) 0 sin 2 t l l k 1 t 0 NhËn thÊy ak lµ hÖ sè trong khai triÓn Ax(l - x) thµnh chuçi Fourier theo hµm sin kx kx l l nªn : a k 0 sin 2 dx  A x (l  x) sin dx l l 0
  14. kx kx l l  a k 0 sin 2 dx  A x (l  x) sin dx l l 0 l kx kx kx l l l l (lx  x 2 ) cos Ta cã : I  0 x(l  x ) sin dx     (l  x) cos dx k l 0 k l l 0 l l  kx  2l 2 kx l = (l  2 x) sin  cos  l 0 k 2 2 k l 0    nÕu k=2n 0 2l 3  I  3 3 cos k  1    4l 3 k nÕu k=2n+1  2n  13  3  8l 2 A  ak  (13) (2n  1) 3  3 Tõ (10, (12), (13) ta cã nghiÖm cña bµi to¸n : (2n  1) 2  2 at (2n  1)x cos sin 8l 2 A  2 l l u ( x, t )  3  3  n 0 (2n  1) Bµi 7 : XÐt dao ®éng tù do cña mét d©y g¾n chÆt ë c¸c mót x = 0, x = l trong 1 m«i tr­êng cã søc c¶n tû lÖ víi vËn tèc, biÕt c¸c ®iÒu kiÖn ban ®Çu : u u t  0  f ( x) ;  F ( x) t t 0 Gi¶i : Gäi u(x,t) lµ ®é lÖch cña thanh cã hoµnh ®é x t¹i thêi ®iÓm t. Do d©y g¾n chÆt t¹i 2 mót chÞu 1 lùc t¸c dông g(x,t) nªn ph­¬ng tr×nh dao ®éng cña d©y cã d¹ng:  2u 2 2 u (1) a  g ( x, t ) t 2 x 2 u V× trong m«i tr­êng cã søc c¶n tØ lÖ víi vËn tèc nªn g(x,t) =  k t  2u 2 0  x  l  u 2u u ®Æt k = 2h  g(x,t) =  2h nªn (1)  2  2h  a 2 víi (1’)   t 0  t  T  t t t B©y giê ta t×m nghiÖm cña (1’)
  15. u Tho¶ m·n ®iÒu kiÖn ®Çu : u t  0  f ( x) ; (2)  F ( x) t t 0 Tho¶ m·n ®iÒu kiÖn biªn : u x 0  0 ; u x l  0 (3) Ta t×m nghiÖm d­íi d¹ng u(x,t) = X(x).T(t) (4) thay (4) vµo (1’) ta cã :T”(t).X(x) + 2hT’(t).X(x) = a2X”(x).T(t) T " (t ) T ' (t ) X " ( x)  a2 Chia 2 vÕ cho T(t).X(x) :  2h T (t ) T (t ) X ( x) T " (t )  2hT ' (t )  a 2T (t )  0 (5) T " (t ) 2h T ' (t ) X " ( x)      2  a 2T (t ) a T (t ) ( 6) X ( x)  X " ( x )  X ( x )  0 Tõ (3) vµ (4) ®Ó cã nghiÖm kh«ng ®ång nhÊt b»ng 0 th× (7) X 0 X x 0 x l Ta ph¶i t×m nghiÖm cña (6) tho¶ m·n (7)  X ( x)  c1  c 2  0 c1  0 *  = - c2  X(x) = c1e-cx + c2ecx   (lo¹i)   cl cl  c 2 e  0 c 2  0  X (l )  c1e  X (0)  c 2  0 c1  0 *  = 0  X(x) = c1x + c2   (lo¹i)   X (l )  c1l  0 c 2  0  X (0)  c1  0 c 2  Ak *  = c2  X(x) = c1cos cx + c2sin cx     X (l )  c 2 sin cl  0 sin cl  0 k ®Ó cã nghiÖm kh«ng tÇm th­êng th× cl  k  c  l kx  pt (6) cã nghiÖm : X ( x)  Ak sin l vµ gi¶i (5) : §Æt T = et th× (5) cã pt ®Æc tr­ng : 2 + 2h + a2 = 0 Ta cã : 2  ka  2 2 2  ka   ka  2 2 2 2 ’ = h – a = h –    h .i   =  '  i   h l  l  l      = - h  ' = - h  qk.i  nghiÖm cña ph­¬ng tr×nh (5) lµ : T (t )  e  ht c1 cos q k t  c 2 sin q k t  2 ka  víi q k   2  h  l   kx Nªn nghiÖm riªng cña (1) : u k x, t    e a k cos q k t  bk sin q k t sin  ht l k 1
  16.  kx u t  0   a k sin Tõ ®iÒu kiÖn ®Çu (8)  f ( x) l k 1  kx u    ha k  bk q k  sin (9)  F ( x) t l k 1 t 0 NhËn thÊy ak lµ hÖ sè trong khai triÓn hµm f(x) thµnh chuçi Fourier nªn nh©n 2 vÕ l l kx kx kx 2 cña (8) víi sin ®­îc :  ak sin dx   f ( x) sin dx l l l 0 0 l l l l k 2x  kx a k 2x  kx a l  k  1  cos dx  k  x    f ( x) sin sin dx dx   f ( x) sin   2k 2 0 l l 2 l 0 0 l 0 l kx 2  a k   f ( x) sin (10) dx l0 l l l kx kx (9)    ha k  bk q k sin 2 dx   F ( x) sin dx l l 0 0 l l kx kx l 2   ha k  bk q k    F ( x ) sin dx   ha k  bk q k   F ( x ) sin dx 20 l l0 l l ha k kx 2  bk  (11)  F ( x) sin  dx qk lq k l 0 VËy nghiÖm cña bµi to¸n :  kx  a cos q k t  bk sin q k t  sin  ht u ( x, t )  e k l k 1 trong ®ã ak ,bk ®­îc x¸c ®Þnh bëi (10) vµ (11)  2u  2u  a 2 2  bshx Bµi 8: T×m nghiÖm cña ph­¬ng tr×nh t 2 x Víi ®iÒu kiÖn ban ®Çu ban ®Çu b»ng 0 vµ ®iÒu kiÖn biªn u x 0  0 ; u x l  0 Gi¶i :  2u  2u  a 2 2  bshx Ta cã ph­¬ng tr×nh : (1) t 2 x u tho¶ m·n ®iÒu kiÖn : u t 0  0 ; (2) 0 t t 0 vµ tho¶ m·n ®iÒu kiÖn biªn : u x 0  0 ; u x l  0 (3) Ta t×m nghiÖm cña ph­¬ng tr×nh (1) d­íi d¹ng : u(x,t) = V(x) + W(x,t) (4)
  17.  2W  2W  a2 Trong ®ã : W(x,t) tho¶ m·n ph­¬ng tr×nh (5) t 2 x 2 tho¶ m·n ®iÒu kiÖn biªn W  0; W (6) 0 x 0 x l  2V V(x) tho¶ m·n ph­¬ng tr×nh a 2 (7)  bshx x 2 tho¶ m·n ®iÒu kiÖn biªn V  0; V (8) 0 x 0 x l b b Gi¶i (7) : V " x    shx  V ' ( x)   2 chx  c1 2 a a b  V ( x)   shx  c1 x  c 2 a2 Tõ (8) ta cã : V  c2  0 c 2  0 x 0    b  b   2 shl  c1l  0 c1  2 shl V x l al  a  bx  V(x) = ( shl – shx) (9) a2 l  b x  V t 0  a 2  l shl  shx     ®iÒu kiÖn ban ®Çu cña (7)  (10)   V 0  t t 0  mµ theo lý thuyÕt ph­¬ng tr×nh (5) cã nghiÖm :  kat kat  kx  W ( x, t )    a k cos (11)  bk sin  sin l l l k 1   b x  W t 0  V t 0   a 2  shl  shx  l  Tõ (2), (4), (10)     W 0  t t 0   kx b x  a   2  shl  shx  sin k l l a  k 1  ka kx b (12)  0  bk  0 sin k l l k 1
  18. kx kx  2b  l x 2b l dx    2 I 1  I 2  Ta cã a k   (13) dx   shx. sin shl. sin 2  0 la  l l l la 0  l kx x víi I 1   shl sin dx l l 0 l l (1) k 1 l 2 l2 l2 kx kx l  I1   cos k   2 2 sin  x. cos k l 0 k k l 0 k  1k 1 l 2 (14)  I1  k l kx vµ I 2   shx sin dx l 0 l l2 kx kx l l l l  I 2   shx. cos shl cos k   dx   chx cos I3  k l 0 k k k l 0 l kx mµ I 3   chx cos dx l 0 l kx kx l l l l  I 3  chx. sin  dx    shx sin I2 k l 0 k k l 0 (1) k 1 l.shl l2 l2 l2   shl (1) k  2 2 I 2  1  2 2 nªn I 2   I 2   k  k k k   (1) k 1 l.shl.k  (15) I2  l 2  k 2 2 Thay (14), (15) vµo (12) : 2b  (1) k 1 l.shl (1) k 1 l.shl.k  (1) k 1 2b.shl (1) k 1 2b.shl.k (16) ak      22    a 2l  l 2  k 2 2  a 2 k a l  k 2 2 k Thay (12) vµ (16) vµo (11) ta cã : (1) k 1 2b (1) k 1 2b.shl.k    kat kx  W ( x, t )   (17)  22  cos sin   2 22  k 1 a k a l k  l l  Tõ (4), (9), (17) ta cã nghiÖm cña (1) : kx 2bshl  (1) k 1 k (1) k  kat kat kx b x  2b k  (l 2  k 2 2 ) cos l sin l u ( x, t )  shl  shx   2  cos sin 2 2  a a l l l a k 1 k 1
  19.  2u  2u  a 2 2  bx( x  l ) Bµi 9: T×m nghiÖm cña ph­¬ng tr×nh t 2 x Víi ®iÒu kiÖn ban ®Çu ban ®Çu b»ng 0 vµ ®iÒu kiÖn biªn u x 0  0 ; u x l  0 Gi¶i :  2u  2u  a 2 2  bx( x  l ) T­¬ng tù bµi 8) ta t×m nghiÖm cña pt (1) t 2 x d­íi d¹ng : u(x,t) = V(x) + W(x,t) (2) 2 V Víi V(x) tho¶ m·n ph­¬ng tr×nh : (3)  bx( x  l ) t 2 tho¶ m·n ®iÒu kiÖn biªn : V  0; V (4) 0 x 0 x l  2W  2W Víi W(x) tho¶ m·n ph­¬ng tr×nh : (5)  t 2 x 2 tho¶ m·n ®iÒu kiÖn biªn : W  0; W (6) 0 x 0 x l b bl 2 Gi¶i (3) : V " ( x)  bx 2  blx  V ' ( x )   x 3  x  c1 3 2 b 4 bl 3  V ( x)   x  x  c1 x  c 2 12 6 V (0)  c 2  0 Tõ (4)   b 4 bl 4  b  c1l  0  c1   l 3 V (l )   l  12 6 12  b 4 bl 3 bl 3  V ( x)   (7) x x x 12 6 12 b 4 bl 3 b 3  V t 0   12 x  6 x  12 l x Ta cã ®iÒu kiÖn ban ®Çu cña pt (3) :  (8)   V 0  t t 0  Mµ ph­¬ng tr×nh (5) cã nghiÖm :  kat kat  kx  w x, t     a k cos (9)  bk sin  sin l l l k 1  b  3 2 3 W t 0  V t 0  12 x( x  2lx  l ) Tõ (2) vµ (8)   (10)   W 0  t t  0 
  20.  kx b 3 2 3  a k sin l  12 x( x  2lx  l ) Tõ (9) vµ (10)   k1    ka b sin kx  0  b  0  l k k l  k 1 kx b b l  x  4  2lx 3  l 3 x sin  ak  dx  I1 6l l 6l 0 kx l   I 1   x 4  2lx 3  l 3 x sin dx  l 0 l kx kx l l l    4 x  x 4  2 x 3l  l 3 x cos 3  6 x 2 l  l 3 cos =  dx k l 0 k l 0 kx l l  4 x  3  6 x 2 l  l 3 cos = dx k l 0 l l kx  kx l l l    12 x  3 2 3 2 = 4 x  6 x l  l sin   12 xl sin dx   k  k l 0 k l 0    l2 kx l  12 x  2 =  12 xl sin dx k 2 2 l 0 l 12l 2 kx  l2 kx 12l l    2 x  l cos = 2 2 x  xl cos  dx    k l 0 k k l 0    12l 3 kx l  2 x  l  cos = 3 3 dx k l 0 l l 12l 3  kx  2l 2 kx =  3 3 2 x  l sin  cos  l 0 k 2 2 k  l 0   nÕu k=2n 0 24l 5 =  48l 5  I 1   5 5 cos(k  1)  k nÕu k=2n+1  2n  15  5  8bl 4  ak  (11) (2n  1) 5  5 (2n  1)at (2n  1)x cos sin 4  8bl l l  Thay (11) vµo (9) : W ( x, t )  (12) 5 (2n  1) 5 n 0
nguon tai.lieu . vn