Xem mẫu

  1. Nghiên Cứu Phát Triển Một Cảm Biến Vận Tốc Góc Dựa Trên Hiệu Ứng Dòng Xả Corona Trần Văn Ngọc1, Đậu Thành Văn2, Nguyễn Ngọc An3, Trần Như Chí3, Chử Đức Trình3, Bùi Thanh Tùng3* 1 Viện Tên lửa, Viện Khoa học và Công nghệ Quân sự 2 Trường Đại học Griffit 3 Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội *Email: tungbt@vnu.edu.vn Abstract- Trong bài báo này, chúng tôi đề xuất cấu hình cảm biến Mặc dù có hiệu suất đo lường cao cũng như kế thừa được đo vận tốc góc (gyroscope) dựa trên hiệu ứng dòng xả corona. những tiến bộ gần đây trong thiết kế và công nghệ chế tạo, Cấu hình đề xuất gồm có bộ phận tạo ra luồng gió và bộ phận cảm biến quán tính với dao động của khối tham chiếu dễ bị cảm nhận độ lệch của luồng gió khi cảm biến chịu tác động của hỏng do sự rung/dao động của các thành phần khối quán tính. vận tốc góc. Luồng gió được tạo ra trong một không gian kín Trong khi đó cảm biến vận tốc góc dựa trên nguyên lý lưu tuần hoàn dựa trên hiệu ứng dòng xả corona. Bộ phận tạo ra luồng gió sử dụng cấu trúc ba dòng xả corona kiểu mũi kim – chất (lỏng hoặc khí) do không cần có dao động của khối quán vòng tròn (pin - ring) để tạo ra luồng gió ion trong ba kênh riêng. tính nên không bị những hạn chế nói trên. Trong các cảm biến Các luồng gió ion được kết hợp lại với nhau tại một lỗ phun này, chuyển động tham chiếu đến từ môi trường lỏng hoặc khí, trước khi thổi vào buồng làm việc chính và luồng gió này quay thay vì một cấu trúc khối đặc rắn. Vì vậy, mối quan tâm chính trở lại các kênh riêng để tăng tốc cho gió ion. Độ lệch của luồng trong thiết kế một cảm biến góc loại này là tạo ra dòng chất gió khi có vận tốc góc tác dụng được đo bằng cách sử dụng một lỏng hoặc khí có khả năng tự do dao động trong không gian. số dây nhiệt điện trở (hotwire) đặt tại các vị trí thích hợp trong Một số kỹ thuật được sử dụng để tạo ra dòng chảy cho cảm buồng làm việc chính. Khi có một vận tốc góc ảnh hưởng đến biến quán tính dựa trên nguyên lý chất lỏng hoặc khí như cảm biến, luồng gió ion được tạo ra bị lệch hướng bởi hiệu ứng phương pháp dựa trên đối lưu tự nhiên từ một vùng được làm Coriolis và được đo bởi các dây nhiệt điện trở này. Cấu trúc cảm biến đề xuất đã được thiết kế, chế tạo dựa trên công nghệ in 3D nóng cục bộ [4], [5], [6], [7]; phương pháp dựa trên sự giãn nở tạo mẫu nhanh. Hoạt động của cảm biến đã được khảo sát với độ nhiệt được gây ra bởi khí đốt nóng nhanh; phương pháp dựa nhạy xác định từ các kết quả thực nghiệm là 44 µV/°/s. Với việc trên luồng gió bằng cách bơm như sử dụng màng PZT [8], [9], không sử dụng bất kỳ một thành phần dao động cơ học nào như [10]; luồng gió cũng có thể được tạo ra từ một chất lỏng liên các cảm biến vận tốc góc kiểu con quay hồi chuyển thông thường, hợp điện sử dụng điện trường bằng cách cấp nguồn cao áp đến cấu trúc cảm biến này do đó có độ bền cơ học cao, phù hợp cho các điện cực ngập trong chất lỏng [11]. Một con quay hồi các ứng dụng khác nhau trong đo lường và điều khiển. chuyển dạng khí loại bỏ hiệu ứng của gia tốc tuyến tính bởi lực đối lưu [12]. Keywords- Cảm biến vận tốc góc, dòng xả corona, gió ion, công nghệ in 3D. Một phương pháp khác tạo ra luồng gió là sử dụng gió ion. Luồng gió ion có thể được tạo ra nhờ hiệu ứng dòng xả corona với cấu trúc là các cặp điện cực pin – ring. Khi đặt một nguồn I. GIỚI THIỆU điện áp cao đến điện cực pin đóng vai trò là nguồn phát xạ ion Cảm biến vận tốc góc (thuật ngữ thường gọi gyroscope hay và điện cực ring đóng vai trò là điện cực tham chiếu thì vùng con quay hồi chuyển) là một dạng cảm biến quán tính để đo xung quanh các điện cực chịu một điện trường mạnh. Dưới tác chính xác vận tốc góc của vật thể quay quanh một trục. Con động của điện trường mạnh quá trình phun ion sẽ bắt đầu bằng quay hồi chuyển dùng trong đo đạc, điều khiển được chia làm sự phóng điện dạng burst, sau đó tiến tới một quầng stream, ba nhóm chính: Con quay có trọng vật quay tròn hay con quay một quầng sáng ổn định và cuối cùng là một tia lửa điện. Mỗi cơ học thông thường; con quay quang học; và con quay dao ion chịu một lực đẩy tĩnh điện Coulomb và được di dời ra khỏi động (vibrating gyros). Trong đó nhóm con quay dao động vùng ion hóa vào khu vực cuốn (drift). Trong khu vực này, các được dùng phổ biến hơn cả. Nguyên lý chính của các cảm biến ion va chạm với các phân tử không khí trung hòa, truyền động loại này là dựa trên hiệu ứng Coriolis. Lực Coriolis sinh ra khi năng sau mỗi va chạm và trôi dạt trong không khí. Tổng của khối gia trọng kích thích dao động theo phương kích thích các lực tĩnh điện trong vùng drift được gọi là lực tĩnh điện đồng thời bị quay với một vận tốc góc ω. Khi đó lực Coriolis thủy động lực học (electrohydrodynamic - EHD) và sự chuyển sẽ làm cho khối gia trọng cảm ứng dao động theo phương cảm động của các luồng khí mang hạt điện tích thường được gọi là ứng [1], [2]. Cảm biến vận tốc góc dạng này được sử dụng gió ion (ion wind) [13]. rộng rãi trong các khối dẫn đường quán tính (initial Có rất nhiều các nghiên cứu ứng dụng hiệu ứng dòng xả measurement unit - IMU) ứng dụng để tạo ra các thiết bị định corona trong các ứng dụng khác nhau như các thiết bị khử tĩnh hướng trong quân sự và dẫn đường trong lĩnh vực hàng hải điện; máy tạo ozon để làm sạch thực phẩm, lọc không khí và thiết bị hàng hải [3]. 259
  2. nước [14], [15]; cảm biến lưu lượng khí [16], [17]; cảm biến tránh được những tác động của môi trường trong quá trính làm đo vận tốc góc [18]. việc. Dựa trên hiệu ứng phóng điện corona, chúng tôi đề xuất một thiết kế cảm biến đo vận tốc góc sử dụng cấu hình ba cặp điện cực point - ring để tạo ra gió ion trong hệ thống phản hồi khép kín. Luồng gió ion trong cảm biến có thể tự do dao động trong không gian ba chiều dưới tác dụng của lực quán tính. Trong bài báo này, trước tiên thiết kế và nguyên lý hoạt động của cảm biến sẽ được thảo luận. Tiếp đó, các kết quả chế tạo và đo đạc thử nghiệm bước đầu trên cấu trúc cảm biến đề xuất này sẽ được trình bày. II. THIẾT KẾ CẢM BIẾN VÀ NGUYÊN LÝ HOẠT ĐỘNG Nhiệm vụ quan trọng trong thiết kế một cảm biến vận tốc góc dạng khí là tạo ra một luồng gió thổi ổn định liên tục trong một không gian giới hạn. Mô hình cảm biến được đề xuất thể hiện trên hình 1. Cảm biến gồm 2 bộ phận chính: bộ phận tạo ra luồng gió và bộ phận cảm biến phát hiện độ lệch của luồng gió này khi nó chịu tác động của vận tốc góc do hiệu ứng Hình 2. Thiết kế cảm biến đề xuất: (1) điện cực pin, (2) điện cực ring, Coriolis. Luồng gió được tạo ra bởi hiệu ứng dòng xả corona (3) điện cực ring chính, (4) kênh dẫn gió ion, (5) lỗ phun gió ion từ 3 có cấu trúc là ba dòng xả corona kiểu pin - ring. Bộ phận cảm kênh ghép lại vào buồng làm việc, (6) buồng làm việc cảm biến, (7) biến phát hiện độ lệch của luồng gió là các dây nhiệt điện trở các dây nhiệt điện trở (hotwire). (hotwire). Hình 1. Mô hình cảm biến vận tốc góc ứng dụng hiệu ứng dòng xả corona Từ mô hình này, thiết kế của cảm biến đề xuất được thể hiện trong hình 2. Cấu hình ba cặp điện cực kim – vòng tròn (pin - ring) được bố trí dạng sao đối xứng tạo ra gió ion trong ba Hình 3. Quá trình tạo và di chuyển tuần hoàn của gió ion. kênh riêng biệt hình trụ. Đường kính kênh tạo gió ion và đường kính buồng làm việc của cảm biến lần lượt là 3 mm và 10 mm. Điện cực pin được chế tạo bằng thép không gỉ SUS304 có đường kính 0.4 mm với đầu mũi hình cầu bán kính 80 µm. Chiều dài pin được chọn vì mục đích lắp rắp dễ dàng, và ở trong thiết kế này là 14 mm. Như có thể thấy trên hình 2, khi cấp một nguồn cao áp đến ba điện cực pin – ring (1) & (2), ba luồng gió ion được tạo ra trong ba kênh riêng biệt (4) di chuyển về phía vòi phun (6). Tại đây ba luồng gió ion này được ghép chung với nhau trước khi đi vào buồng làm việc của cảm biến (5). Sau khi đi qua buồng làm việc, luồng gió ion lại được tách ra để đi vào ba kênh tạo gió ion tạo thành vòng phản hồi khép kín nhằm tăng tốc cho ba luồng gió ion tạo ra bởi các cặp điện cực point-ring. Quá trình ghép và tách của luồng gió ion được lặp lại như vậy tạo ra một dòng tuần hoàn bên trong hệ thống như mô tả ở hình 3. Sau mỗi chu kỳ của quá trình truyền, tốc độ dòng chảy trong buồng làm việc tăng dần cho đến khi đạt trạng thái ổn định. Ngoài ưu điểm của luồng chảy tuần hoàn khép kín để tăng tốc độ gió ion, cảm biến thiết kế theo dạng kín này còn Hình 4. Nguyên lý làm việc của cảm biến. 260
  3. Luồng gió ion chảy trong buồng làm việc của cảm biến có ngoài thông qua cơ chế cổ góp (hay còn gọi là vòng trượt - slip dạng hình nón như được mô tả ở hình 4a. Khi cảm biến chưa ring). Cổ góp gồm 12 dây được lắp đặt dọc tâm xoay đang làm chịu tác động của một vận tốc góc, luồng gió ion cách đều các việc; ngoài nhiệm vụ cấp nguồn cao áp đến các điện cực pin cảm biến là các dây nhiệt điện trở (hình 4b). Luồng gió ion và điện cực ring cổ góp còn cấp nguồn nuôi cho các dây nhiệt chịu tác động của lực Coriolis khi cảm biến này bị quay với điện trở và lấy tín hiệu thay đổi điện áp trên các dây nhiệt điện vận tốc góc ω và làm cho luồng gió ion bị lệch hướng so với trở này. Điện áp tại lối ra của cảm biến được ghi lại tại các giá hướng ban đầu theo chiều vận tốc quay. Ví dụ như khi có vận trị vận tốc quay khác nhau của bàn xoay. tốc góc quay ωx tức là cảm biến quay theo trục x với vận tốc góc ω thì lúc này luồng gió ion do hiệu ứng Coriolis sẽ bị lệch về phía dây nhiệt điện trở Rx2 (hình 4c). Độ lệch luồng gió dẫn đến lưu lượng gió thổi đến hotwire 1 (Rx1) và hotwire 3 (Rx2) khác nhau. Điều này tạo ra sự khác biệt về nhiệt độ của hai hotwire và sau đó là điện trở của chúng. Tương tự khi cảm biến quay theo trục y với vận tốc góc ωy, độ lệch luồng gió thổi làm lưu lượng khí thổi đến các hotwire 2 (Ry1) và hotwire 4 (Ry2) khác nhau. Hình 6. (a) Thiết kế 3D cảm biến, (b) Cảm biến được chế tạo bằng công nghệ in 3D. Hình 5. Bố trí các Hotwire trong buồng làm việc của cảm biến. Trong buồng làm việc của cảm biến, độ lệch này được phát hiện sử dụng dây nhiệt điện trở vonfram (hotwire). Các nhiệt điện trở này có điện trở và hệ số nhiệt điện trở (temperature coefficient of resistance - TCR) tương ứng là 0.453 Ω và 4500 ppm/°C, đường kính là 0.01 mm; và được lắp đặt trên một mặt phẳng cách lỗ vòi phun một khoảng bằng 7 mm. Hình 7. Sơ đồ nguyên lý hệ thống đo cảm biến vận tốc góc. Trong mặt phằng này bốn hotwire được đặt đối xứng và cách trục luồng gió là 5.0 mm, chiều dài của mỗi hotwire là 3.5 mm thể hiện trên hình 5. Các hotwire được kết nối vào mạch điện tích hợp trong thiết bị để thu tín hiệu nhờ sự thay đổi điện áp sử dụng phần mềm thu thập tín hiệu NI (National Instrument Ltd.) với tần số lấy mẫu 25.6 kHz. III. THỰC NGHIỆM Cảm biến được thiết kế bằng phầm mềm SolidWork như trên hình 6a. Thiết kế được tách thành ba phần để dễ dàng cho việc chế tạo bằng công nghệ tạo mẫu nhanh và dễ dàng lắp đặt các chi tiết như điện cực pin, điện cực ring và dây nhiệt điện trở. Cảm biến được chế tạo bằng công nghệ quang hóa (polyjet) và được lắp ghép hoàn chỉnh các bộ phận như trên hình 6b. Sơ đồ thiết lập hệ thống đo vận tốc góc sử dụng cảm biến đã chế tạo được trình bày trên hình 7. Khả năng phát hiện vận tốc góc của cảm biến được kiểm chứng sử dụng hệ thống bàn xoay (đường kính 100 mm) được điều khiển bằng động cơ điện một chiều. Vận tốc góc của bàn xoay có thể điều khiển được và được đo bởi một bộ giải mã (encoder) tích hợp. Cảm biến được gắn chính giữa tâm của bàn xoay và nối với mạch Hình 8. Sơ đồ khối hệ thống đo đạc và thu thập dữ liệu. 261
  4. động của môi trường và luồng gió ion tạo ra là ổn định. Khi bàn xoay quay với tốc độ thiết lập thì giá trị điện áp đầu ra đo trên các hotwire có sự thay đổi, tỷ lệ thuận với vận tốc bàn xoay. Độ nhạy của cảm biến tính được từ đồ thị kết quả này là xấp xỉ 44 µV/°/s. Hoạt động của cảm biến ở các điều kiện khác nhau như hoạt động trong dải đo với vận tốc góc lớn hơn, đang được tiếp tục khảo sát. Hình 9. Hệ thống đo xây dựng thực tế. IV. KẾT QUẢ VÀ THẢO LUẬN Hình 10. Đặc tính I-V của cấu hình point – ring. Kết quả khảo sát đặc tính dòng điện – điện áp (I-V) tại pin 1, pin 2, pin 3 và của đồng thời cả ba pin được thể hiện trên hình 10. Đặc tính dòng điện – điện áp không chỉ thể hiện mối quan hệ đầu vào (điện áp) và đầu ra (dòng điện) mà còn thể hiện sự phụ thuộc của tốc độ luồng gió ion tạo ra vào cường độ dòng điện. Kết quả thể hiện trên hình 10 cho thấy khi tăng giá trị điện áp cấp đến các điện cực pin - ring thì giá trị cường độ dòng điện phóng tại mỗi cặp điện cực pin – ring cũng tăng theo. Các đặc tính I-V của ba cặp điện cực pin – ring trong các kênh gió ion thể hiện bởi ba đường cong bên dưới cùng là đồng dạng. Đặc biệt, kết quả này cũng thể hiện giá trị cường độ dòng điện phóng tổng (đường cong trên cùng) của cả ba cặp điện cực pin – ring xấp xỉ bằng tổng của cường độ dòng điện phóng đo tại mỗi cặp điện cực pin – ring. Từ các kết quả này ta có thể khẳng định cấu trúc gom gió phản hồi khép kín thiết kế hoạt động hiệu quả, có tác dụng tổng hợp gió từ ba kênh riêng rẽ. Các kết quả thực nghiệm khảo sát vận tốc luồng gió trong thời gian 200 giây cũng xác nhận độ ổn định của gió ion theo thời Hình 11. Kết quả thực nghiệm biểu diễn lối ra tại các vận tốc bàn xoay gian. Kết quả này có thể xác nhận áp suất tạo ra trong buồng khác nhau. làm việc này là không đáng kể. Thực nghiệm kiểm tra khả năng phát hiện vận tốc góc của cảm biến đã chế tạo cũng đã bước đầu được tiến hành với các kết V. KẾT LUẬN quả thực nghiệm thể hiện trên hình 11. Bàn xoay được thiết Trong bài báo này, chúng tôi đã đề xuất một thiết kế cảm biến lập các vận tốc khác nhau: 90 vòng/phút, 150 vòng/phút, 300 đo vận tốc góc kiểu lưu chất (fluidic gyroscope) sử dụng gió vòng/phút. Điện áp tại lối ra của cảm biến khi có vận tốc góc ion. Gió ion được tạo bởi cấu trúc ba cặp điện cực pin – ring tác dụng được so sánh với điện áp tại lối ra khi không có vận dựa trên hiệu ứng dòng xả corona trong một buồng phản hồi tốc góc. Ta thấy rằng, khi bàn xoay chưa làm việc tức là cảm khép kín. Độ lệch của luồng gió ion gây ra bởi lực Coriolis biến không chịu một tác động quay thì đầu ra điện này bằng 0 dưới tác dụng của vận tốc góc được phát hiện với độ nhạy xác mV. Giá trị này ổn định thể hiện cảm biến không chịu tác định từ các kết quả thực nghiệm là 44 µV/°/s. Cấu trúc cảm biến đề xuất tiêu thụ dòng điện thấp, kích thước nhỏ gọn, và 262
  5. không chịu tác động của môi trường xung quanh do có cấu A Phys., vol. 130–131, no. SPEC. ISS., pp. 531–536, 2006. [9] V. T. Dau, T. X. Dinh, and S. Sugiyama, “A MEMS-based silicon trúc khép kín. Bên cạnh đó, cấu trúc cảm biến này không sử micropump with intersecting channels and integrated hotwires,” J. dụng bất kỳ một thành phần rung cơ học nào, thay vào đó là sử Micromechanics Microengineering, vol. 19, no. 12, 2009. dụng đặc tính của luồng gió ion, do đó có độ bền cơ học cao, [10] Z. Zhang, J. Kan, S. Wang, H. Wang, J. Wen, and Z. Ma, “Flow rate có thể ứng dụng cho nhiều bài toán trong đo lường và điều self-sensing of a pump with double piezoelectric actuators,” Mech. Syst. Signal Process., vol. 41, no. 1–2, pp. 639–648, 2013. khiển. [11] K. Mori, H. Yamamoto, K. Takemura, S. Yokota, and K. Edamura, “Dominant factors inducing electro-conjugate fluid flow,” Sensors Actuators, A Phys., vol. 167, no. 1, pp. 84–90, 2011. TÀI LIỆU THAM KHẢO [12] S. Yokota, Y. Ogawa, K. Takemura, and K. Edamura, “A dual-axis [1] V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. liquid-rate microgyroscope using Electro-Conjugate Fluid,” J. Adv. Campanella, “Gyroscope Technology and Applications: A Review in Comput. Intell. Intell. Informatics, vol. 14, no. 7, pp. 751–755, 2010. the Industrial Perspective,” Sensors, vol. 17, no. 10, p. 2284, 2017. [13] A. P. Chattock, “On the Velocity and Mass of the ion in the Electric [2] A. M. Shkel, “Type i and type ii Micromachanied Vibratory Wind in Air,” Philos. Mag. Ser. 5, vol. 48, no. 294, pp. 401–420, vol. Gyroscopes,” Proc. IEEE /ION Position Locat. Navig. Symp., San 30, no. 30, 1899. Diego, CA, Apr 24-27, vol. 0, pp. 1–14, 2016. [14] N. V. Dũng, “Nghiên cứu ứng dụng công nghệ Plasma lạnh trong xử lý [3] N. Yazdi, F. Ayazi, and K. Najafi, “Micromachined inertial sensors,” nước: tổng hợp tài liệu,” Tạp chí khoa học ĐHCT, vol. 36, pp. 106– Proc. IEEE, vol. 86, no. 8, pp. 1640–1658, 1998. 111, 2015. [4] J. Bahari, J. D. Jones, and A. M. Leung, “Sensitivity improvement of [15] N. V. Dũng, “Nghiên cứu về đặc tính phóng điện của buồng plasma micromachined convective accelerometers,” J. Microelectromechanical lạnh,” Tạp chí Khoa học Trường Đại học Cần Thơ, vol. 35, pp. 9–16, Syst., vol. 21, no. 3, pp. 646–655, 2012. 2014. [5] V. T. Dau, D. V. Dao, M. Hayashida, T. X. Dinh, and S. Sugiyama, “A [16] V. T. Dau, T. X. Dinh, T. T. Bui, and T. Terebessy, “Corona Dual Axis Accelerometer Utilizing Low Doped Silicon Thermistor,” anemometry using dual pin probe,” Sensors Actuators, A Phys., vol. IEEJ Trans. Sensors Micromachines, vol. 126, no. 5, pp. 190–194, 257, pp. 185–193, 2017. 2006. [17] N. T. Van, T. T. Bui, T. X. Dinh, T. Terebessy, and T. C. Duc, “A [6] V. T. Dau, O. Tomonori, T. X. Dinh, D. V. Dao, and S. Sugiyama, “A SYMMETRICALLY ARRANGED ELECTRODES FOR CORONA multi axis fluidic inertial sensor,” Proc. IEEE Sensors, vol. 1, pp. 666– DISCHARGE ANEMOMETRY Institute of Missile – Military Institute 669, 2008. of Science and Technology , Hanoi , Vietnam University of [7] V. T. Dau, T. Otake, T. X. Dinh, and S. Sugiyama, “Design and Engineering and Technology , Vietnam National University , Hanoi , Fabrication of Convective Inertial Sensor,” Transducer 2009, Denver Vietnam Graduate Sch,” pp. 1112–1115, 2017. USA, pp. 1170–1173, 2009. [18] H. T. Phan, T. X. Dinh, P. N. Bui, C. Tran, T. T. Bui, and V. T. Dau, [8] X. Yang, Z. Zhou, H. Cho, and X. Luo, “Study on a PZT-actuated “Robust Angular Rate Sensor based on Corona Discharge Ion Wind,” diaphragm pump for air supply for micro fuel cells,” Sensors Actuators, pp. 4–7. 263
nguon tai.lieu . vn