Xem mẫu

  1. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Kiến trúc mạng đồng bộ Time/phase cho mạng 5G Lê Bá Tân, Nguyễn Khắc Tính, Đào Xuân Tùng, Dư Văn Cường Tổng Công ty Mạng lưới, Tập đoàn Viễn thông Quân đội Email: tanlb@viettel.com.vn; tinhnk@viettel.com.vn; tungdx2@viettel.com.vn; cuongdv4@viettel.com.vn Abstract— Trong bài báo này, chúng tôi đề xuất Phần còn lại của bài báo sẽ mô tả các yếu tố ảnh hương phương án tổ chức mạng đồng bộ Time/phase để tới mạng đồng bộ Time/Phase và mô hình đề xuất cho cung cấp tín hiệu đồng bộ cho mạng 5G. Do hiện các nhà mạng: Phần II, chúng tôi miêu tả các yếu tố ảnh trạng các nhà mạng đang sử dụng nhiều loại kiến hưởng tới chất lượng mạng đồng bộ. Phần III: đánh giá trúc đấu nối, thiết bị nên sẽ gặp các bất cập khác các mô hình có thể cung cấp tín hiệu đồng bộ. Phần IV: nhau trong quá trình xây dựng mô hình mạng đồng cung cấp kết quả đo kiểm thực tế. Cuối cùng, chúng tôi bộ. Vì vậy, bài báo sẽ tập trung phân tích và xây kết luận bài báo trong phần V. dựng các mô hình dựa trên các khuyến nghị ITU-T kết hợp với kiến trúc mạng truyền tải hiện tại của II. CÁC YẾU TỐ ẢNH HƯỞNG nhà mạng từ đó đưa ra đề xuất kiến trúc mạng đồng Theo 3GPP TS 36.133 clause 7.4.2 yêu cầu của chất bộ phase/time dựa theo kết quả phân tích thực tế. lượng mạng đồng bộ của timephase để đảm bảo cho dịch vụ 5G cần độ chính xác ±1500ns cho các trạm có quy Keywords- Mạng đồng bộ, Phase/Time, cTE, dTE, hoạch bán kính phủ bán kính < 3 km (small cell) và profile ITU-T G.8275.1, ITU-T G.8275.2, ITU-T ±5000ns cho quy hoạch bán kính phủ > 3 km (large G8271.2 PTS, ITU-T G8271.1 FTS. cell). Do đó, để đảm bảo chạy được với các trường hợp trên mạng vô tuyến, yêu cầu đưa ra cho mạng nhà thiết kế mạng đồng bộ phải đáp ứng đồng thời cả hai giá trị I. GIỚI THIỆU trên. Cụ thể: Trong mạng di động 2G, 3G, 4G sử dụng điều chế tín hiệu theo tần số (FDD - Frequency Division Duplex- [TS 125 104, ref 6.3.1 Minimum requirement], do đó cần đảm bảo sai số tín hiệu đồng bộ tần số ±50ppb (Parts Per Billion) tại giao diện vô tuyến và ± 16ppb tại điểm cuối mạng truyền tải. Tuy nhiên, nói đến 5G mạng truyền tải cần đáp ứng thêm yêu cầu mới là đồng bộ Time/Phase với yêu cầu cao về độ chính xác tại giao diện vô tuyến độ sai số về thời gian ±1500ns và tại giao diện truyền Hình 1. Mô tả quỹ sai số thời gian (Table 1: Time and dẫn 1100ns [3GPP TS 36.133 clause 7.4 Cell phase phase requirement classes [ITU-T G.8271]). synchronization accuracy]. Theo như Hình 1, ITU-T đã thực hiện chuẩn hóa trên Để truyền được tín hiệu đồng bộ time/phase hiện tại có mạng truyền tải để đáp ứng yêu cầu của 3GPP. Để cụ thể 02 chuẩn có thể hỗ trợ bao gồm NTP - Network Time hóa con số ±1500ns ITU-T đã nghiên cứu và chuẩn hóa Protocol (năm 1985) với khả năng đảm bảo độ chính xác từng điểm trên chuỗi cung cấp tín hiệu đồng bộ phải đảm là ± 100ms và Precision Time Protocol – PTP (năm bảo chất lượng tương ứng với mục tiêu trên mạng truyền 2002) đều được chuẩn hóa bởi IEEE có khả năng đảm tải phải đảm bảo tối thiểu 1100ns trước khi cung cấp đầu bảo độ chính xác đến ±100ns. Do đó, với yêu cầu vào cho mạng vô tuyến. Cụ thể như sau: ±1500ns thì phương thức duy nhất được lựa chọn là chuẩn truyền bản tín đồng bộ bằng bản tin PTP. Chính vì thế ITU-T đã thành lập lên SG15/Q13 (Study Group 15) – nghiên cứu ra các yêu cầu chuẩn hóa về quá trình truyền đồng bộ tần số, time/phase sử dụng bản tin PTP [Ref. Standardization in ITU-T Study Group 15 and Hình 2. Mô tả quỹ sai số Time/phase Q13/15]. Đến này thì, ITU-T vẫn tiếp tục chuẩn hóa các (G.8271.1/Y.1366.1, ref. [7. Network limits]) mô hình, tham số cho việc truyền tín hiệu đồng bộ theo Hình 2 mô tả yêu cầu độ chính xác tại điểm A – đầu ra hướng này để hoàn tối ưu khả năng xử lý trên mạng của nguồn cung cấp tín hiệu đồng bộ time/phase phải đạt truyền tải. độ chính xác ±100ns và tại điểm cuối cùng của mạng truyền tải C thì tín chất lượng tín hiệu đồng bộ ISBN 978-604-80-5958-3 381
  2. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) time/phase phải đảm bảo ±1100ns (Đối với điểm B hiện mạng truyền tải: (1) Mô hình FTS/Full Timing Support tại ITU vẫn đang trong quá trình nghiên cứu tuy nhiên (ITU-T G.8271.1/Y.1366.1, ref [7.Network limits]) trong dự kiến điểm B có thể sẽ được thiết kế gộp với điểm A để đó toàn bộ các thiết bị truyền tải tham gia xử lý bản tin tối ưu chức năng xử lý bản tin đồng bộ). tín hiệu đồng bộ; (2) Mô hình PTS/Partial Timming Support (ITU-T G.8271.2/Y.1366.2, ref [7.Packet network limits]) trong đó các thiết bị truyền tải không hỗ trợ hoàn toàn vào việc xử lý bản tin tín hiệu đồng bộ. 1/ Mô hình 1- FTS: Hình 4: Mô hình FTS. Như minh họa trong Hình vẽ 4, gồm 01 thiết bị đồng hồ Hình 3. Chi tiết phân bổ sai lệch về thời gian theo ITU-T chủ đặt tại trạm Core nhận tín hiệu đồng bộ Time/phase G.8271.1(ref. [IEEE 1588 Precision Time Protocol chuẩn từ GNSS và thực hiện chuyển đổi thành các bản (PTP) in ITU-T Standards - SiT-AN10052 Rev. 1.0]) tin đồng bộ PTP (Precision Time Protocol). Các thiết bị Các nguyên nhân chính gây ra lỗi trên mạng truyền tải thuộc chuỗi đồng bộ đều được cấu hình theo profile bao gồm: (1) Trên mạng cáp: Nguyên nhân do sự bất đối chuẩn tương ứng với mô hình FTS (ITU-T xứng giữa của đường thu và phát khi có sự khác biệt về G.8275.1/Y.1369.1, ref [Precision time protocol telecom khoảng cách. Cụ thể cứ sai lệnh 1m về cáp quang mỗi profile for phase/time synchronization with full timing hướng sẽ làm lệch độ trễ là 5ns tương đương cTE ~ support from the network] để đảm bảo tính đồng bộ giữa 2.5ns và mạng cáp thường xuyên bị thay đổi trong vận các nhà cung cấp thiết bị. Các bản tin tín hiệu đồng bộ hành khai thác. (2) Thiết bị DWDM: Nguyên nhân do được truyền qua 11 thiết bị truyền tải (hoặc nhiều hơn các bước sóng 100G được chuyển đổi quang điện bằng tùy thuộc và chất lượng đồng hồ và khả năng tái tạo bản các bộ đệm buffer FIFO trong quá trình xử lý tín hiệu số tin đồng bộ của thiết bị), tại mỗi thiết bị tín hiệu đồng bộ DSP làm sinh ra các trễ (Latency) ngẫu nghiên, các giá được tính toán bù lại các sai lệch time/phase của thiết bị trị này thay đổi theo các hướng quang khác nhau gây nên trước nó và gửi tới trạm tiếp theo sau khi đã hiệu chỉnh. bất đối xứng và tạo ra các sai số ngẫu nhiên cTE hoặc Tại đầu cuối chuỗi đồng bộ, trạm 5G sẽ thực hiện nhận dTE. Tương tự, quá trình OTN mapping, các bộ đệm các bản tin được gửi từ mạng truyền tải xử lý bản tin để được sử dụng để mapping các dịch loại dịch vụ khác nhận thông tin về Time/phase. Thực tế, kết quả mô hình nhau vào các ODUk gây ra độ trễ. Độ trễ sẽ không đáng FTS khắc phục được hầu hết các ảnh hưởng của mạng kế khi mạng hoạt động trong điều kiện bình thường, tuy truyền tải bằng việc sử dụng kết hợp hai giải pháp phần nhiên khi có sự cố như đứt cáp, tác động mạng lưới định cứng (chip) và phần mềm (thuật toán bù) để tham gia kỳ, khởi động lại (restart)… thì trễ này sẽ lớn hơn dẫn vào quá trình xử lý truyền đồng bộ Time/phase. Mô hình đến tạo ra cTE hoặc dTE. (3) Thiết bị IP router: Nguyên FTS phù hợp với các hệ thống thiết bị truyền tải mới, nhận do quá trình xử lý các bản tin timestamping khi đặc biệt là các thiết bị được sản xuất từ sau năm 2016 truyền bản tin đồng bộ được cấp phát từ master clock (sau khi tiêu chuẩn ITU-G.8275.1 được công bố). cho các slave bằng giao thức PTP qua mạng truyền tải. 2/ Mô hình 2 - PTS: Để có sở cứ cho các nhà mạng thiết kế tính toán mạng Tuy mô hình FTS có những ưu điểm về kỹ thuật, nhưng đồng bộ ITU-T G8273.2 [G.8273.2/Y.1368.2, ref - Time các nhà mạng cần phải thay thế, nâng cấp các thiết bị error noise generation] có chuẩn hóa chất lượng sai số truyền dẫn hiện tại đang hoạt động trên mạng lưới, điều đồng bộ trên các thiết bị theo các lớp như sau: Lớp A này gây phát sinh chi phí rất lớn. Khắc phục vấn đề này, (ClassA): cTE ~ 50ns; lớp B (ClassB): cTE ~ 20ns; lớp ITU-T đề xuất thêm tiêu chuẩn G.8271.2 cho phép các C (Class C): cTE~10ns; lớp D (Class D): cTE~5ns (dự nhà mạng đang sử dụng thiết bị cũ không hỗ trợ khả kiến). năng xử lý tín hiệu đồng bộ vẫn có thể truyền được. Mô hình cụ thể như sau: III. CÁC MÔ HÌNH CUNG CẤP ĐỒNG BỘ QUA MẠNG TRUYỀN TẢI Với hiện trạng các nhà mạng, các thiết bị truyền tải đã được triển khai từ các giai đoạn triển khai mạng 2G, 3G, 4G là thiết bị SDH, Switch, router L2/L3. Đa số các thiết bị này chưa được yêu cầu cụ thể để đảm bảo truyền được Hình 5: Mô hình PTS xử lý và truyền tín hiệu đồng bộ. Chính vì thế ITU-T đã chuẩn hóa 02 mô hình để cung cấp tín hiệu đồng bộ qua ISBN 978-604-80-5958-3 382
  3. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Theo Hình 5, mô hình cũng tương tự theo mô hình FTS tuy nhiên phần thiết bị truyền tải không tham gia xử lý tín hiệu đồng bộ. Tại thiết đồng bộ chủ sau khi nhân tín hiệu đồng bộ Time/phase từ GNSS thực hiện biến đổi thành các bản tin đồng bộ PTP. Các bản tin này được cấu hình theo profile chuẩn tương ứng với mô hình PTS (ITU-T G.8275.2/Y.1369.2, ref [Precision time protocol telecom profile for phase/time synchronization with partial timing support from the network]. Các bản tin tín hiệu đồng bộ được truyền qua mạng truyền tải, tại mỗi thiết bị truyền tải tín hiệu đồng bộ được chuyển tiếp truyền qua và không xử lý bù trừ các sai lệch về thời gian. Tới đầu cuối chuỗi đồng bộ, trạm 5G được cấu hình profile G.8275.2 sẽ thực hiện nhận các bản tin được gửi từ đồng hồ đồng bộ chủ. Mô hình này có ưu điểm tối Theo Hình 7: Cisco_kết quả đo với mặt nạ chuẩn. ưu chi phí nhưng không kiểm soát tốt được vấn đề gây Theo Hình 7, kết quả đo kiểm chất lượng tín hiệu đầu ra bất đối xứng trong quá trình truyền tín hiệu đồng hồ chủ thiết bị Cisco nằm trong mặt nạ 1100ns và không bị cắt, đến các trạm 5G. Lý do là do các thiết bị truyền tải đảm bảo chất lượng theo yêu cầu. không tham gia vào quá trình hiệu chỉnh các bản tin đồng bộ (timestampe) dẫn tới bản tin đồng hộ có sự sai lệch về thời gian giữa trạm phát sóng và đồng hồ chủ GM khi trên mạng lưới có sự biến động về đường truyền như bất đối xứng, khả năng tái tạo xử lý của thiết bị…. Thực tế đánh giá, chuỗi tín hiệu đồng bộ tính từ đồng hồ chủ đến các trạm 5G/4G TDD chỉ hoạt động tốt khi Hình 8: Cisco_ giá trị Max TE truyền qua 3-4 thiết bị truyền tải, khi số lượng thiết bị Theo Hình 8, giá trị đo kiểm Max TE đạt giá trị 224.5ns nhiều hơn sẽ không kiểm soát và đảm bảo được được nhỏ hơn sai số cho phép của ITU-T là 1100ns. chất lượng. Thực hiện kiểm tra thêm chất lượng mạng đồng bộ khi cáp đứt, thiết bị tự động chuyển qua nguồn cung cấp dự IV. KẾT QUẢ ĐO KIỂM phòng TP4100#2 (bên phải). Kết quả đo kiểm trên máy Trong phần này, chúng tôi thực hiện các mô phỏng mô đo như sau: hình mạng đồng bộ đã trình bày ở trên để đánh giá kết quả cung cấp chất lượng tín hiệu đồng bộ. Mô hình sử dụng 11 thiết bị truyền tải để phù hợp với hầu hết các cấu trúc của mạng của các nhà mạng. Mô hình 1 – FTP Với mô hình này chúng tôi đánh giá trên thiết bị truyền tải dung thiết bị router Cisco/ClassA; Huawei/Class B và mô hình kết hợp DWDM (Infinera) với thiết bị router của Huawei: - Thiết bị truyền tải Cisco. Kết quả đo tại trạm số thứ Hình 9: Cisco_Kết quả chuyển mạch tự 11 giá trị TE = 224.5ns. ĐẠT so với yêu cầu 1100ns. Tại Hình 9, màn hình máy đo thể hiện việc chuyển mạch có làm thay đổi giá trị MaxTE, tuy nhiên sau khi chuyển mạch chất lượng tín hiệu đồng bộ vẫn nằm trong giới hạn sai số cho phép. - Thiết bị truyền tải Huawei. Kết quả đo tại node số 11 giá trị TE = ~ 98.5ns. ĐẠT so với yêu cầu 1100ns. Hình 6: Cisco_Mô hình đấu nối 11 thiết bị Class A Theo Hình 6, mô hình được sử dụng thiết bị đồng hồ chủ TP4100 đi qua 11 thiết bị truyền tải gồm 01 thiết bị core AGG và 10 thiết bị Site Router (SRT) có chất lượng Class A. Các thiết bị cấu hình sử dụng Profile chung G.8275.1. Kết quả đo kiểm tại máy đo như sau: Hình 10: Huawei_Mô hình đấu nối 11 thiết bị Class B ISBN 978-604-80-5958-3 383
  4. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Theo Hình 10, mô hình được sử dụng thiết bị đồng hồ chủ TP4100 đi qua 11 thiết bị truyền tải gồm 01 thiết bị core AGG và 10 thiết bị Site Router (SRT) có chất lượng Class B. Các thiết bị cấu hình sử dụng Profile chung G.8275.1. Kết quả đo kiểm tại máy đo như sau: Hình 14: DWDM&Router_kết quả đo mặt nạ chuẩn. Theo Hình 14, kết quả đo kiểm chất lượng tín hiệu đầu ra thiết bị Huawei nằm trong mặt nạ 1100ns và không bị cắt, đảm bảo chất lượng theo yêu cầu. Hình 11: Huawei_kết quả đo với mặt nạ chuẩn. Theo Hình 11, kết quả đo kiểm chất lượng tín hiệu đầu ra thiết bị Huawei nằm trong mặt nạ 1100ns và không bị cắt, đảm bảo chất lượng theo yêu cầu. Hình 15: DWDM&Router _giá trị Max TE Theo Hình 15, giá trị đo kiểm Max TE đạt giá trị 118.5ns nhỏ hơn sai số cho phép của ITU-T là 1100ns. Mô hình 02: PTS Với mô hình này chúng tôi đánh giá trên các thiết bị Hình 12: Huawei_kết quả chi tiết giá trị Max TE SRT Layer 2 trong 02 trường hợp chuỗi 03 thiết bị và Theo Hình 12, giá trị đo kiểm Max TE đạt giá trị 98.5ns chuỗi 11 thiết bị. Do kết quả giống nhau nên bài báo nhỏ hơn sai số cho phép của ITU-T là 1100ns. trình bày kết quả vendor Cisco: - Thiết bị router Huawei và thiết bị DWDM infinera. - Thiết bị Cisco chuỗi 3 thiết bị: Kết quả đo tại trạm số Kết quả đo tại trạm số thứ tự 18 giá trị TE = ~ 118.5ns. 3 giá trị TE = ~ 633.5ns. ĐẠT so với yêu cầu 1100ns. ĐẠT so với yêu cầu 1100ns. Hình 16: Cisco_Mô hình đấu nối 3 Theo Hình 16, mô hình được sử dụng thiết bị đồng hồ chủ TP4100 đi qua 03 thiết bị truyền tải gồm 01 thiết bị core AGG và 02 thiết bị Site Router (SRT) không hỗ trợ xử lý tín hiệu đồng bộ. Các thiết bị cấu hình sử dụng Profile chung G.8275.2. Kết quả đo kiểm tại máy đo như sau: Hình 13. Mô hình đo kiểm 18 thiết DWDM &Router Theo Hình 13, mô hình được sử dụng thiết bị đồng hồ chủ TP4100 đi qua 18 thiết bị truyền tải gồm 07 thiết bị DWDM (tín hiệu đồng bộ trên DWDM chạy thu phát trên một sợi) và 11 thiết bị router có chất lượng Class B. Các thiết bị cấu hình sử dụng Profile chung G.8275.1. Kết quả đo kiểm tại máy đo như sau: Hình 17: Cisco_kết quả đo với mặt nạ chuẩn (PTS). ISBN 978-604-80-5958-3 384
  5. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Theo Hình 17, kết quả đo kiểm chất lượng tín hiệu đầu Hình 22: Cisco_giá trị Max TE (PTS - 11 thiết bị) ra thiết bị cao ~ 600ns tuy nhiên giá trị vẫn nằm trong mặt nạ 1100ns và không bị cắt, đảm bảo chất lượng theo V. KẾT LUẬN yêu cầu. Việc đưa ra một mô hình mạng đồng bộ cung cấp phù hợp cho tất cả các nhà mạng là rất khó do hiện trạng mạng (thiết bị, kiến trúc) của các nhà mạng là khác nhau. Do đó, việc lựa chọn mô hình và chuẩn để áp dụng vào từng nhà mạng rất quan trọng và cần được đánh giá chi tiết. Thông qua kết quả thử nghiệm chúng tôi khuyến nghị các nhà mạng xây dựng phương án quy hoạch dựa Hình 18: Cisco_giá trị Max TE (PTS) trên mô hình FTS ITU-T G.8271.1 chạy profile Theo Hình 18, giá trị đo kiểm Max TE đạt giá trị G8275.1. Chất lượng của các thiết bị truyền tải phải đáp 633.5ns nhỏ hơn sai số cho phép của ITU-T là 1100ns. ứng tối thiểu Class B trở lên theo chuẩn ITU-T G8273.2. - Chuỗi thiết bị truyền tải gồm 11 thiết bị: Kết quả Việc sử dụng mô hình PTS theo ITU-T G8271.2 sẽ rất đo tại trạm số 11 giá trị TE = 14758.5ns. KHÔNG ĐẠT rủi ro cho mạng lưới do tính không ổn định cũng như so với yêu cầu 1100ns. phải đầu tư bổ sung số lượng lớn các đồng hồ chủ. Mô hình PTS chỉ nên sử dụng tại các mô hình khi chuỗi đồng bộ chỉ có 3-4 thiết bị hoặc phải dùng kết hợp với thêm tín hiệu GNSS tại trạm để dự phòng. TÀI LIỆU THAM KHẢO Hình 19: Cisco_Mô hình đấu nối 11 thiết bị (PTS) [1] Recommendation ITU-T G.8271/Y.1366 Time and phase Hình 19, mô hình được sử dụng thiết bị đồng hồ chủ synchronization aspects of telecommunication networks TP4100 đi qua 11 thiết bị truyền tải gồm 01 thiết bị core [2] Recommendation ITU-T G.8271.1/Y.1366.1 Network limits for AGG và 10 thiết bị Site Router (SRT) không hỗ trợ xử lý time synchronization in packet networks with full timing support from the network tín hiệu đồng bộ. Các thiết bị cấu hình sử dụng Profile [3] Recommendation ITU-T G.8271.2/Y.1366.2 Network limits for chung G.8275.2. Kết quả đo kiểm tại máy đo như sau: time synchronization in packet networks with partial timing support from the network [4] Recommendation ITU-T G.8275.1/Y.1369.1 Precision time protocol telecom profile for phase/time synchronization with full timing support from the network. [5] Recommendation ITU-T G.8275.2/Y.1369.2 Precision time protocol telecom profile for phase/time synchronization with partial timing support from the network [6] Recommendation ITU-T G.8273.2/Y.1368.2 (10/20) Timing characteristics of telecom boundary clocks and telecom time slave clocks for use with full timing support from the network [7] Technical report documents a reference model for the IMT 2020/5G transport network - Transport network support of IMT- 2020/5G [8] Base Station (BS) radio transmission and reception - 3GPP TS 38.104 version 15.5.0 Release 15 Hình 20: Cisco_kết quả so mặt nạ chuẩn [9] Requirements for support of radio resource management - (PTS-11 thiết bị). (3GPP TS 38.133 version 16.4.0 Release 16) Theo Hình 21, kết quả đo kiểm chất lượng tín hiệu đầu [10] IEEE 1588 Precision Time Protocol (PTP) in ITU-T Standards ra thiết bị cao nằm ngoài mặt nạ 1100ns, không đảm bảo chất lượng theo yêu cầu. ISBN 978-604-80-5958-3 385
nguon tai.lieu . vn