Xem mẫu

Fundamentals of Power Electronics INDEX Air gap in coupled inductor, 502 in flyback transformer, 503 in inductor, 464-466, 498, 505, 509 in transformer, 469 A (mH/1000 turns), 509 American wire gauge (AWG) data, 755-756 design examples, 527, 531 Amorphous alloys, 473 AmpereÕs law, 457-458 Amp-second balance (see Capacitor charge balance) Apparent power, 550 Artificial ramp circuit, 415 effect on CPM boost low-harmonic rectifier, 637-639 effect on line-to-output transfer function of CCM buck, 437-438 effect on small-signal CCM models, 428-438 effect on small-signal DCM models, 438-447 effect on stability of CPM controllers, 414-418 Asymptotes (see Bode plots) Audiosusceptibility G (s) (see Line-to-output transfer function) Average current control feedforward, 635-636 in low-harmonic rectifier systems, 593-598, 634-636, 649, 650-652 modeling of, 649-652 Averaged switch modeling, 239-245, 390-403 of current-programmed CCM converters, 423-428 of current-programmed DCM converters, 438-447 in discontinuous conduction mode, 370-390 equivalent circuit modeling of switching loss, 241-245 examples nonideal buck converter, 241-245 DCM buck converter, 393-400 CCM SEPIC, 757-762 generalization of, 390-403 of ideal CCM switch networks, 242, 377, 757-762 of ideal DCM switch networks, 377 of quasi-resonant converters, 732-737 Average power and Fourier series, 542-543 modeled by power source element, 375-379, 423-428, 438-447 in nonsinusoidal systems, 542-555 predicted by averaged models, 57 power factor, 546-550 sinusoidal phasor diagram, 550-551 Averaging approximation, discussion of, 195-196, 200-202 averaged switch modeling, 239-245 basic approach, 198-209 1 Fundamentals of Power Electronics capacitor charge balance, 24 circuit, 231-245 to find dc component, 6, 16 flyback ac model, 209-218 inductor volt-second balance, 22-23 introduction to, 193-198 modeling efficiency and loss via, 57 to model rectifier output, 645-647 to model 3¿ converters, 611-614 of quasi-resonant converters ac modeling, 732-737 dc analysis, 712-728 state-space, 218-231 Battery charger, 9, 70 B-H loop in an ac inductor, 499-500 in a conventional transformer, 153, 500-501 in a coupled inductor, 501-502 in a filter inductor, 497-499 in a flyback transformer, 502-503 modeling of, 458-460 Bidirectional dc-dc converters, 70 Bipolar junction transistor (BJT) breakdown mechanisms in, 86-87 construction and operation of, 82-87 current crowding, 85-86 Darlington-connected, 87 idealized switch characteristics, 65-66 on resistance, 53, 82 quasi-saturation, 82-83, 86 storage time, 84 stored minority charge in, 82-86 switching waveforms, 83-86 Bode plots (see also Harmonic trap filters, sinusoidal approximation) asymptote analytical equations, 275-276 CCM buck-boost example, 289-292 combinations, 272-276 complex poles, 276-282 frequency inversion, 271-272 graphical construction of, 296-309 addition, 296-301 closed-loop transfer functions, 329-332 division, 307-309 parallel combination, 301-307 parallel resonance, 301-303 series resonance, 298-303 impedance graph paper, 307 nonminimum phase zero, 269-271 reactance graph paper, 307 real pole, 263-268 real zero, 268-269 RHP zero, 269-271 transfer functions of buck, boost, buck-boost, 292-293 Body diode (see MOSFET) 2 Fundamentals of Power Electronics Boost converter (see also Bridge configuration, Push-pull isolated converters) active switch utilization in, 179, 608 averaged switch model, DCM, 380-381 circuit-averaged model, 233-239 current-programmed averaged switch model, CCM, 424-425 averaged switch model, DCM, 443-444 small-signal ac model, CCM, 427-428, 430-431 small-signal ac model, DCM, 445-447 as inverted buck converter, 136-137 as low-harmonic rectifier, 594-597, 605-609, 617, 627-634 nonideal analysis of, 43-51, 53-57 quasi-resonant ZCS, 722-723 small-signal ac model CCM, 208-210, 251 DCM, 385-390 steady-state analysis of, CCM, 24-29 DCM, 121-125 transfer functions, CCM, 292-293 Bridge configuration (dc-dc converters) boost-derived full bridge, 171-172 buck-derived full bridge, 154-157 buck-derived half bridge, 157-159 full bridge transformer design example, 528-531 minimization of transformer copper loss in, 516-517 Bridge configuration (inverters) single phase, 7-8, 142-145, 148-150 three phase, 70, 143-148 Buck-boost converter (see also Flyback converter) 3¿ac-dc rectifier, 615-616, 619 averaged switch model, DCM, 370-381 as cascaded buck and boost converters, 138-141 current-programmed averaged switch model, DCM, 438-444 more accurate model, CCM, 430-432 simple model, CCM, 419-423 small-signal ac model, DCM, 445-447 dc-3¿ac inverter, 71-72, 615-616 DCM characteristics, 115, 127-129, 381 as low-harmonic rectifier, 598-599 manipulation of ac model into canonical form, 248-251 nonideal, state-space averaged model of, 227-232 noninverting version, 139, 148-149 as rotated three-terminal cell, 141-142 small-signal ac model, CCM, 208-210, 251 small-signal ac model, DCM, 382-388 transfer functions, CCM, 289-293 transformer isolation in, 166-171 Buck converter (see also Bridge configuration, Forward converter, Push-pull isolated converters), 6, 15-23, 34-35 active switch utilization in, 179 averaged switch model, 239-245 current-programmed 3 Fundamentals of Power Electronics averaged switch model, CCM, 423-427 averaged switch model, DCM, 442-447 small-signal ac model, CCM, 421-427, 431-438 small-signal ac model, DCM, 442-447 equivalent circuit modeling of, small-signal ac, CCM, 208-210, 251 small-signal ac, DCM, 385-388, 393-400 steady-state, CCM, 51-53 steady-state, DCM, 380-381 as high power factor rectifier single phase, 599 three phase, 614-615 multi-resonant realization, 729 quasi-square-wave resonant realizations, 730-731 quasi-resonant realizations ac modeling of, 732-737 zero current switching, 662-663, 712-722, 723-724 zero voltage switching, 728 small-signal ac model CCM, 208-210, 251 DCM, 385-390 steady-state analysis of, CCM, 17-22, 23, 34-35, 51-53 DCM, 111-121, 380-381 switching loss in, 94-101, 241-245 employing synchronous rectifier, 73-74 transfer functions, CCM, 292-293 Buck2 converter, 149, 151 Buck 3¿ inverter (see Voltage source inverter) Canonical circuit model, 245-251 via generalized switch averaging, 402-403 manipulation into canonical form, 248-251 parameters for buck, boost, buck-boost, 251 physical development of, 245-248 transfer functions predicted by, 247-248, 292-293 Capacitor amp-second balance (see Capacitor charge balance) Capacitor charge balance boost converter example, 27 Cuk converter example, 31-32 definition, 24 in discontinuous conduction mode, 115 nonideal boost converter examples, 45, 55 Capacitor voltage ripple boost converter example, 28-29 buck converter example, 34-35 in converters containing two-pole filters, 34-35 Cuk converter example, 32-34 Cascade connection of converters, 138-141 Characteristic value a (current programmed mode), 414, 417-418, 435-436 Charge balance (see Capacitor charge balance) Circuit averaging (see also Averaged switch modeling), 231-245 averaging step, 235 boost converter example, 233-238 4 Fundamentals of Power Electronics linearization, 235-238 obtaining a time-invariant network, 234-235 summary of, 231-233 Commutation failure, 574 notching, 575 in 3¿ phase controlled rectifier, 573-575 Compensators (see also Control system design) design example, 346-354 lag, 343-345 lead, 340-340, 350-351 PD, 340-343, 350-351 PI, 343-345 PID, 345-346, 352-354 Complex power, 550-551 Computer power supply, 8-9 Computer spreadsheet, design using, 180-183 Conduction loss (see Copper loss, Semiconductor conduction loss) Conductivity modulation, 75, 79, 82, 87, 90 Control system design (see also Compensators, Negative feedback), 323-368 compensation, 340-346 construction of closed-loop transfer functions, 326-332 design example, 346-354 for low-harmonic rectifiers approaches, 634-652 modeling, 645-652 phase margin test, 333-334 vs. closed-loop damping factor, 334-338 stability, 332-339 voltage regulator block diagram, 324-325, 328, 347-349 design specifications, 339-340 Control-to-output transfer function as predicted by canonical model, 248 of CCM buck, boost, and buck-boost converters, 292-293 of current programmed converters, 422, 427-428, 434-437, 446 of DCM converters, 387-390, 396-399 of quasi-resonant converters, 733, 736 Conversion ratio M (see also Switch conversion ratio m) of boost, 18, 26, 127, 381 of buck, 18, 120, 381 of buck-boost, 18, 128, 381 of Cuk converter, 32, 381 of loss-free resistor networks, 376-381 in low-harmonic rectifiers, 593-595 modeling of, 40-43 of quasi-resonant converters, 711, 720-723 of parallel resonant converter, 676-678, 686-689 of SEPIC, 151, 381 of series resonant converter, 671-674, 679-686 via sinusoidal approximation, 670 Copper loss 5 ... - tailieumienphi.vn
nguon tai.lieu . vn