Xem mẫu

  1. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) Ăng-ten đa băng tần sử dụng với mạch tích hợp LR1110 trong ứng dụng định vị đa môi trường Trịnh Lê Huy∗ , Nguyễn Bình Phương† , Fabien Ferrero‡ ∗Đại học Công nghệ Thông Tin, Đại học Quốc gia Thành phố Hồ Chí Minh, Việt Nam † Phòng Nghiên cứu và Phát triển Sản phẩm, RFThings Co., LTD, Việt Nam ‡ Viện nghiên cứu LEAT, Đại học Côte d’Azur, Pháp Email: huytl@uit.edu.vn, phuongnb@rfthings.com.vn, Fabien.FERRERO@univ-cotedazur.fr Tóm tắt—Bài báo này trình bày một ăng-ten ba băng tầng với cấu trúc 2 mảnh FR4 đặt vuông góc với nhau, ăng-ten hoạt động được ở 3 dải tần là 0.868 GHz, 1.575 GHz và 2.4 GHz, những dải tần này phù hợp với các công nghệ truyền thông LoRa, GPS/GNSS và WiFi/BLE. Kết quả mô phỏng ăng-ten cho thấy giá trị hệ số phản xạ nhỏ hơn -10 dB cho dải tần 0.868 GHz và 1.575 GHz và nhỏ hơn -6 dB cho dải tần 2.4 GHz. Với kích thước tổng thể là 0.14λ × 0.08λ (λ là độ dài bước sóng tần số 0.868 GHz), ăng-ten được này có thể được sử dụng cho mục đích định vị theo dõi ở cả môi trường trong nhà và ngoài trời. Từ khóa—Ăng-ten đa băng tần, định vị, LR1110, LoRa, GPS/GNSS, WiFi/BLE. Hình 1: Cấu trúc cơ bản của ăng-ten đa băng tần I. GIỚI THIỆU Trong những năm gần đây, thuật ngữ IoT đã được phổ biến rộng rãi trong lĩnh vực công nghệ thông tin và cho thiết bị. Trong bối cảnh này, ba tiêu chí chính cần truyền thông. Một trong những ứng dụng của IoT nhận được quan tâm là kích thước, băng tần và hiệu suất hoạt được nhiều sự quan tâm chính là định vị vị trí của người động [11]. Đã có nhiều nghiên cứu đề xuất các thiết kế hoặc vật thể [1]. Để tăng độ linh hoạt của thiết bị định antenna đa băng tần có thể hỗ trợ định vị trong nhà và vị khi sử dụng tại những môi trường khác nhau (trong ngoài trời cũng như việc truyền tải những dữ liệu này nhà, ngoài trời), nhiều loại công nghệ đã được tích hợp về trạm cơ sơ thông qua các chuẩn giao tiếp không dây và sử dụng đồng thời [2]. Điều này cũng giúp hệ thống như LoRa, WiFi, GSM...[12], [13], [14], [15] thu thập thêm nhiều thông tin liên quan đến vị trí, từ Trong bài báo này, một ăng-ten đa băng tần có thể đó sử dụng các bộ lọc, thuật toán để tăng độ chính xác hoạt động với các công nghệ LoRa, GPS/GNSS và của quá trình định vị. WiFi/BLE được đề xuất để ứng dụng cho việc định vị Khi nhắc đến các bài toán định vị, GPS/GNSS chính tìm kiếm không chỉ ở môi trường ngoài trời mà còn ở là công nghệ được nhắc đến rất nhiều cho các ứng dụng môi trường trong nhà. Nhờ sử dụng cấu trúc vuông góc, ngoài trời [3], [4], [5], [6]. Dựa vào thông tin nhận được khoảng không gian chiếm chỗ của ăng-ten được giảm từ các vệ tinh, sử dụng thêm các thuật toán xử lý dữ liệu, xuống đáng kể. Với kích thước 0.14λ × 0.08λ, ăng-ten vị trí của thiết bị sẽ được xác định với độ chính xác khá này phù hợp với các thiết bị cầm tay nhỏ gọn. Điều này cao. Tuy nhiên, nếu đường truyền từ thiết bị và vệ tinh giúp thiết bị có thể được đeo hoặc gắn trên hành lý, bị chắn, đặc biệt ở môi trường trong nhà, GPS/GNSS phương tiện giao thông và động vật. thường xuất hiện nhiều sai số. Có rất nhiều phương pháp Phần tiếp theo sẽ mô tả thiết kế của ăng-ten với các để giải quyết vấn đề này, trong đó, sử dụng thêm các thông số kích thước cụ thể. Ngay sau đó, các kết quả kỹ thuật bổ trợ như WiFi Scan, BLE Scan là những đề mô phỏng của ăng-ten được trình bày cùng với những xuất khá hiệu quả [7], [8], [9], [10]. thảo luận và đề xuất khi tích hợp chung với IC LR1110. Việc tích hợp nhiều công nghệ vô tuyến khác nhau sẽ Cuối cùng, bài báo sẽ được kết thúc bằng phần tóm tắt tạo ra một thách thức to lớn trong việc thiết kế ăng-ten các kết quả đã đạt được. ISBN 978-604-80-5958-3 173
  2. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) II. THIẾT KẾ ĂNG-TEN ĐA BĂNG TẦN Ăng-ten này được thiết kế để bao phủ ba dải tần số là 0.868 GHz, 1.575 GHz và 2.4 GHz. Với dải tần 0.868 GHz, LoRa là công nghệ giao tiếp không dây đáng chú ý nhất. Với các đặc tính về năng lượng tiêu thụ, khoảng cách giao tiếp, một thiết bị theo dõi sử dụng công nghệ LoRa có thể gửi dữ liệu vị trí đã thu thập đến gateway ở khoảng cách xa với một mức độ tiêu hao năng lượng là tối thiểu. Ngoài ra, kỹ thuật TDoA cũng được tích hợp trực tiếp trong IC dưới dạng Ranging Engine có thể hỗ trợ định vị ngoài trời thay thế GPS/GNSS tại những nơi không có tầm nhìn thẳng từ thiết bị đến vệ tinh. Mặt khác, trong trường hợp thiết bị được đặt trong nhà, dải (a) Phần tử phát xạ chính tại tần số 868 MHz tần 2.4 GHz là phù hợp cho việc định vị bằng kỹ thuật WiFi Scan/BLE Scan. Theo thống kê cho thấy, hầu hết các khu vực ở thành thị đều có các điểm truy cập WiFi (APs), sử dụng các thuật toán so sánh cường độ tín hiệu phát ra từ APs để tính toán ra vị trí của thiết bị cũng đã được ứng dụng rộng rãi trong thực tế. Đặc biệt, ở dải tần số 2.4 GHz, bên cạnh công nghệ WiFi/BLE cũng có khả năng hỗ trợ xác định vị trí. Nhìn chung, ăng-ten được đề xuất có thể bao phủ băng tần LoRa (0.863 GHz đến 0.868 GHz). Băng tần GPS/GNSS (1.563 GHz đến 1.587 GHz) và băng tần WiFi/BLE (2.4 GHz đến 2.48 GHz) là một giải pháp hợp lý cho các thiết bị định vị đa môi trường. Mô tả đặc tính của các công nghệ LoRa, GPS/GNSS, WiFi/BLE được thể hiện trong [16], [17], (b) Phần tử phát xạ kí sinh [18], [19], dựa vào đây bài báo có thể triển khai các công nghệ trên các dải tần phù hợp cho nhu cầu định vị ở những môi trường khác nhau. Bảng I thể hiện đặc tính của các dải tần sử dụng trong bài báo. Bảng I: Đặc tính các công nghệ LoRa GPS/GNSS WiFi BLE Dải tần 868 1.575 2.4 GHz 2.4 GHz MHz GHz Phạm vi 5Km Toàn cầu 100m 30m Sai số 3-20m 1-30m 1-10m 1-5m Xuyên tường Cao Thấp Trung bình Thấp Năng lượng Thấp Thấp Cao Thấp Chi phí Thấp Thấp Thấp Thấp (c) Các phần tử ghép nối điện dung Dựa trên một nghiên cứu được trình bày trong [20], với phương pháp đặt phần tử bức xạ vuông góc với mặt Hình 2: Nguyên lý hoạt động của ăng-ten đa băng tần phẳng đất sẽ giúp giảm kích thước tổng thể của toàn bộ ăng-ten mà vẫn đảm bảo được hiệu suất và độ rộng băng tần. Dựa trên ý tưởng này, cấu trúc của ăng-ten được trình bày trong Hình 1. Về cơ bản, antenna bao phần tử cấp nguồn. Phần tử cấp nguồn sẽ được đặt song gồm 3 phần chính, phần tử phát xạ (radiating element), song và ngay trên khu vực trống của mặt phẳng đất. Tấm phần tử cấp nguồn (feeding element) và mặt phẳng đất nền của phần tử này tương đối dày với mục đích đảm (ground plane). Phần tử phát xạ được đặt vuông góc tại bảo được băng thông của ăng-ten ở ba dải tần số. Phần một đầu của mặt phẳng đất và được hàn trực tiếp với tử này sẽ được nối với ngõ ra của IC LR1110 thông qua ISBN 978-604-80-5958-3 174
  3. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) một cuộn cảm để phối hợp trở kháng và nối với mặt phẳng đất thông qua via. Thiết kế của ăng-ten dựa trên cấu trúc IFA (Inverted F Antenna) với chiều dài tổng thể của phần tử bức xạ có kích thước tương ứng với một phần tư bước sóng của tần số thấp nhất là 868 MHz khoảng 87mm (Hình 2a). Tần số cộng hưởng tại tần số 868 MHz sẽ có hài bậc 2 tương ứng với tần số 1.76 GHz. Do đó để tinh chỉnh cho tần số cộng hưởng này về đúng băng tần của GPS/GNSS, một phần tử kí sinh được thêm vào (Hình 2b). Phần tử này vừa đóng vai trò dịch chuyển tần số cộng hưởng từ 1.76 GHz xuống 1.575 GHz cũng như hỗ trợ phối hợp trở kháng để antenna đạt được hệ số phản xạ dưới -10 dB cho toàn bộ băng tần này. Cuối cùng, tần số cộng hưởng tại 2.4 GHz được hình thành nhờ vào tính chất Hình 4: Hệ số phản xạ mô phỏng của ăng-ten ghép nối điện dung (capacitive coupling) như được trình bày trong Hình 2c. Về cơ bản chiều dài và khoảng cách của các phần tử này sẽ quy định tần số hoạt động của III. KẾT QUẢ MÔ PHỎNG VÀ THẢO LUẬN ăng-ten ở băng tần cao nhất. Kết quả mô phỏng được trình bày trong Hình 4. Đường cong biểu hiện hệ số phản xạ của ăng-ten. Các hình chữ nhật dọc trong Hình 4 thể hiện băng thông cần thiết của LoRa, GPS/GNSS và WiFi/BLE. Chúng tôi nhận thấy tất cả các tần số trong các băng thông này có return loss bằng hoặc nhỏ hơn -6 dB của dải tần 2.4 GHz và -10 dB cho dải tần 1.575 GHz và 0.868 GHz. Với những kết đo đạt được, một bo mạch được thiết kế cho IC LR1110 sử dụng ba băng tần đã đề xuất cho những ứng dụng định vị đa môi trường (Hình 5). IC này được tích hợp sẵn công nghệ định vị GPS/GNSS cho các ứng dụng định vị ngoài trời. Khi tín hiệu nhận được từ vệ tinh bị suy giảm do thiết bị di chuyển vào (a) Hình chiếu bằng của ăng-ten môi trường trong nhà hoặc các khu vực khuất tầm nhìn từ vệ tinh, thuật toán RSSI cho kỹ thuật WiFi Scan/BLE Scan [21] tại băng tần 2.4 GHz được kích hoạt. Ngoài ra, việc sử dụng thuật toán TDoA dựa trên công nghệ LoRa [22] cũng được cân nhắc để tăng độ chính xác khi định vị. IC LR1110 có ba ngõ ra tín hiệu tại các băng (b) Hình chiếu bằng của phần tử phát xạ tần LoRa, GPS/GNSS, WiFi/BLE, tuy nhiên ăng-ten chỉ có duy nhất một ngõ vào, vì vậy, việc sử dụng thêm IC Hình 3: Kích thước chi tiết của ăng-ten theo đơn vị mm SP3T để kết nối là cần thiết. Cụ thể hơn, ba đầu vào của IC SP3T là ngõ ra cao tần của LoRa, GPS/GNSS, Kích thước chi tiết của ăng-ten tính bằng milimét được WiFi/BLE từ LR1110, và đầu ra của IC SP3T được nối trình bày cụ thể trong Hình 3. Về cơ bản, ăng-ten có kích đến phần tử cấp nguồn của ăng-ten. Nhiệm vụ của IC thước tổng thể là 48mm x 27mm, được in trên lớp nền SP3T là chuyển đổi qua lại giữa các dải tần khi thiết bị FR4 Epoxy có hằng số điên môi là 4.4 and hệ số suy cần sử dụng những tác vụ liên quan. Hình 6 mô tả sơ hao là 0.02. Tấm nền của phần tử phát xạ và mặt phẳng đồ nguyên lý của mạch. đất có độ dày 0.8 mm, trong khi phần tử cấp nguồn có độ dày là 3.2 mm. Nhờ vào việc kết hợp các đường vi IV. KẾT LUẬN dải trên phần tử phát xạ, ăng-ten có những tần số cộng Tóm lại, bài báo trình bày các thiết kế của một ăng- hưởng khác nhau tại các băng tần lần lượt là 0.868 GHz, ten đa băng tần trên cùng một bo mạch và các mô phỏng 1.575 GHz và 2.4 GHz. của chúng. Ăng-ten hoạt động ở băng tần 0.868 MHz ISBN 978-604-80-5958-3 175
  4. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) [2] M. Yassin and E. Rachid, “A survey of positioning techniques and location based services in wireless networks,” in 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015, pp. 1–5. [3] D. Perea-Strom, A. Morell, J. Toledo, and L. Acosta, “Gnss integration in the localization system of an autonomous vehicle based on particle weighting,” IEEE Sensors Journal, vol. 20, no. 6, pp. 3314–3323, 2020. [4] L.-T. Hsu, H. Tokura, N. Kubo, Y. Gu, and S. Kamijo, “Multiple faulty gnss measurement exclusion based on consistency check in urban canyons,” IEEE Sensors Journal, vol. 17, no. 6, pp. 1909–1917, 2017. [5] M. Schreiber, H. K¨onigshof, A.-M. Hellmund, and C. Stiller, “Vehicle localization with tightly coupled gnss and visual odom- etry,” in 2016 IEEE Intelligent Vehicles Symposium (IV), 2016, pp. 858–863. [6] H. Jung, J.-H. Park, and H.-Y. Jeong, “Experimental assessment of gnss-based vehicle positioning accuracy using 3-d slam ref- erence,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 2019, pp. 1–2. [7] S. Sadowski and P. Spachos, “Comparison of rssi-based indoor localization for smart buildings with internet of things,” in 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2018, pp. 24– Hình 5: Thiết bị mẫu sử dụng IC LR1110 và ăng-ten đề 29. xuất [8] U. M. Qureshi, Z. Umair, and G. P. Hancke, “Indoor localization using wireless fidelity (wifi) and bluetooth low energy (ble) sig- nals,” in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, pp. 2232–2237. [9] R. Kaewpinjai, T. Chuaubon, and A. Apavatjrut, “On improv- ing indoor navigation accuracy using bluetooth beacons,” in 2020 17th International Conference on Electrical Engineer- ing/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2020, pp. 727–730. [10] S. G. Obreja and A. Vulpe, “Evaluation of an indoor localization solution based on bluetooth low energy beacons,” in 2020 13th International Conference on Communications (COMM), 2020, pp. 227–231. [11] A. Nella and A. S. Gandhi, “A survey on microstrip antennas for portable wireless communication system applications,” in 2017 Hình 6: Sơ đồ nguyên lý điều khiển các ngõ ra vào IC International Conference on Advances in Computing, Communi- cations and Informatics (ICACCI), 2017, pp. 2156–2165. LR1110 [12] L. Trinh, M. Le, N. Truong, and F. Ferrero, “Compact diversity multi-band antennas using for low power communication stan- dards,” in 2018 International Conference on Advanced Technolo- gies for Communications (ATC), 2018, pp. 61–64. cho LoRa, 1.575 GHz cho GPS/GNSS và 2.4 GHz cho [13] L. Lizzi, F. Ferrero, P. Monin, C. Danchesi, and S. Boudaud, WiFi/BLE. Nhờ những tính chất này, một thiết bị di “Design of miniature antennas for iot applications,” in 2016 động có kích thước bé, có khả năng hỗ trợ nhiều công IEEE Sixth International Conference on Communications and Electronics (ICCE), 2016, pp. 234–237. nghệ không dây khác nhau đã được đề xuất. Hơn nữa, [14] Y. Li, X. Tang, Y. Yu, W. Shi, and G. Yang, “A triple-band nhờ vào việc sử dụng kỹ thuật TDoA của LoRa, kỹ thuật hybrid-mode gps/wlan antenna for smart phone with full metal RSSI Scan của WiFi/BLE và GPS/GNSS để đưa ra một housing,” in 2017 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, hệ thống định vị cho môi trường ngoài trời và trong nhà. 2017, pp. 759–760. [15] A. Basit, M. I. Khattak, A. R. Sebak, A. B. Qazi, and A. A. LỜI CẢM ƠN Telba, “Design of a compact microstrip triple independently Nghiên cứu được tài trợ bởi Đại học Quốc gia Thành controlled pass bands filter for gsm, gps and wifi applications,” IEEE Access, vol. 8, pp. 77 156–77 163, 2020. phố Hồ Chí Minh (ĐHQG-HCM) trong khuôn khổ Đề [16] C. T. Nguyen, Y. M. Saputra, N. V. Huynh, N.-T. Nguyen, T. V. tài mã số C2021-26-05. Khoa, B. M. Tuan, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, S. Chatzinotas, and B. Ottersten, “A comprehen- TÀI LIỆU THAM KHẢO sive survey of enabling and emerging technologies for social distancing—part i: Fundamentals and enabling technologies,” [1] S. Ghorpade, M. Zennaro, and B. Chaudhari, “Survey of local- IEEE Access, vol. 8, pp. 153 479–153 507, 2020. ization for internet of things nodes: Approaches, challenges and [17] Y. Kırka˘gac and M. Do˘gruel, “Performance criteria based com- open issues,” Future Internet, vol. 13, no. 8, 2021. parative analysis of indoor localization technologies,” in 2018 26th Signal Processing and Communications Applications Con- ference (SIU), 2018, pp. 1–4. ISBN 978-604-80-5958-3 176
  5. Hội nghị Quốc gia lần thứ 24 về Điện tử, Truyền thông và Công nghệ Thông tin (REV-ECIT2021) [18] W. San-Um, P. Lekbunyasin, M. Kodyoo, W. Wongsuwan, Conference on Antennas and Propagation (EuCAP), 2021, pp. J. Makfak, and J. Kerdsri, “A long-range low-power wireless 1–5. sensor network based on u-lora technology for tactical troops ˇ [21] M. Cavojský, M. Uhlar, M. Ivanis, M. Molnar, and M. Drozda, tracking systems,” in 2017 Third Asian Conference on Defence “User trajectory extraction based on wifi scanning,” in 2018 6th Technology (ACDT), 2017, pp. 32–35. International Conference on Future Internet of Things and Cloud [19] X. Li, X. Zhang, K. Chen, and S. Feng, “Measurement and Workshops (FiCloudW), 2018, pp. 115–120. analysis of energy consumption on android smartphones,” in [22] N. Podevijn, J. Trogh, A. Karaagac, J. Haxhibeqiri, J. Hoebeke, 2014 4th IEEE International Conference on Information Science L. Martens, P. Suanet, K. Hendrikse, D. Plets, and W. Joseph, and Technology, 2014, pp. 242–245. “Tdoa-based outdoor positioning in a public lora network,” [20] K. Nguyen, B. L. G. Jonsson, F. Ferrero, and L. Lizzi, “On in 12th European Conference on Antennas and Propagation limitation of impedance bandwidth for integrated antennas in (EuCAP 2018), 2018, pp. 1–4. mobile terminals with narrow clearance,” in 2021 15th European ISBN 978-604-80-5958-3 177
nguon tai.lieu . vn