Xem mẫu

INTRODUCTION the double triode type, and consumed about 150kW of electr1cal power. To keep all these circuits in operation at the same time is said to have been extremely difficult but, if this could be done for one hour, ENIAC (Electronic Numerical Integrator and Calculator) could do more work than ASCC would do in a week. Despite the success of ENIAC, computer engineers did not long have to depend on thermionic valves for in 1948 the point-contact transistor of Bardeen and Brattain and the junction transistor of William Shockley both emerged from the laboratories of the Bell Telephone Company in the USA. The transistor was much smaller than the thermionic valve, consumed less power and was far more reliable. The controlled flow of electrons in crystalline substances was also used in other semiconductor devices, such as the varistor, the thermistor, the phototransistor and the magnetic memory. From printed circuits, the technology soon moved on to integrated circuits in which the transistors and associated components are formed and interconnected in situ as thin films on a chip substratum. Up to 20,000 transistors can be integrated on a chip 6mm×3mm and 0.5mm thick. It is little over a hundred years since Alexander Graham Bell invented the telephone (1876) and Edison and Swan the incandescent lamp (1879). In the century that followed electronics has given us radio, television, the tape recorder, the video recorder, the pocket calculator, automation and robotics, the electron microscope, the heart pacemaker, myo-electrically controlled artificial limbs, the automatic aircraft pilot, the maser and the laser, computer-aided design and manufacture, solar cells, satellite communication and, with the rocket, man in space and unmanned space probes. Science and technology have combined to accelerate us into the Electronic Age. As J.G.Crowther wrote, ‘Faraday, Henry and Maxwell would have had little influence in the world without Bell, Edison and Marconi.’ Science and technology, the two arms of progress, have combined to leave us on the shore of a vast ocean of possibilities brought about by electronics. Before and during the Industrial Revolution the ingenious powers of man were devoted to saving labour and to enhancing the capabilities of the paltry human frame. As we approach the last decade of the twentieth century, a new vista is opening before us, one in which at least the drudgery of brainwork is taken over by the electronic machine, the computer. This has already happened in fields such as accountancy and banking, in such affairs as stocktaking, engineering design and many others. But according to modern research programmes we are only at the beginning. The door is scarcely ajar, the door which opens on to life in a society where knowledge, the most prized possession, is freely available to all. The Japanese, in a joint programme between government, industry and academics, are deliberately co-ordinating resources to develop a fifth generation 42 BASIC TOOLS, DEVICES AND MECHANISMS of computers, computers which would be endowed with ‘artificial intelligence’, that is, computers which can think for themselves. This is a concept that to many people appears ridiculous and to many others a threat to the dignity of themselves as members of the human race or worse, a threat to the very existence of humanity as the only reasoning animal living on the planet. Americans who, up to now, have dominated the computer market world-wide, both technically and commercially, are expressing concern about the Japanese attack on their leadership. Perhaps the situation on a global basis is best summed up by the following quotation from Professor Edward Fredkin of Massachusetts Institute of Technology: Humans are okay. I’m glad to be one. I like them in general, but they’re only human. It’s nothing to complain about. Humans aren’t the best ditch-diggers in the world, machines are. And humans can’t lift as much as a crane. They can’t fly without an airplane. And they can’t carry as much as a truck. It doesn’t make me feel bad. There were people whose thing in life was completely physical — John Henry and the steam hammer. Now we’re up against the intellectual steam hammer. The intellectual doesn’t like the idea of this machine doing it better than he does, but it’s no different from the guy who was surpassed physically. FURTHER READING Armytage, W.H.G. A social history of engineering (Faber & Faber, London, 1961) Boorstein, D.J. The discoverers (Dent, London, 1984) Braudel, F. Civilisation and capitalism, 15th–19th centuries: volume 1, the structures of everyday life (Fontana, London, 1985) Burstall, A.F. History of mechanical engineering: technology today and tomorrow (Faber & Faber, London, 1963) Derry, T.K. and Williams, T.I. A short history of technology (Oxford University Press, Oxford and New York, 1960) Dunsheath, P. A history of electrical engineering (Faber & Faber, London, 1957) Feigenbaum, E.A. and McCorduck, P. The fifth generation: artificial intelligence and Japan’s computer challenge to the world (Addison-Wesley, Reading Mass., 1983; Pan, London, 1984) Gimpel, J. Mediaeval machine: the industrial revolution of the middle ages (Wildwood House, Aldershot, 1988) Lilliey, S. Men, machines and history (Lawrence & Wishart, London, 1965) Oakley, K.P. Man the toolmaker (British Museum—Natural History, London, 1972) Pannell, J.P.M. An illustrated history of civil engineering (Thames & Hudson, London, 1964) Sprague de Camp, L. Ancient engineers (Tandem Publishing, London, 1977) Strandth, S. Machines: an illustrated history (Nordbok, Gothenburg, 1979; Mitchell Beazley, London, 1979) Thomson, G. The foreseeable future (Cambridge University Press, Cambridge, 1957) White, L. (Jr) Medieval technology and social change (Oxford University Press, Oxford, 1962) 43 PART ONE MATERIALS ... - tailieumienphi.vn
nguon tai.lieu . vn