Xem mẫu

  1. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang ĐỒ ÁN TỐT NGHIỆP BỘ MÔN THÔNG TIN QUANG ĐỀ TÀI: TÁN XẠ RAMAN CÓ KÍCH THÍCH CHƯƠNG 2: ỨNG DỤNG TÁN XẠ RAMAN KÍCH THÍCH KHUYẾCH ĐẠI TÍN HIỆU QUANG 2.3.1 Hiệu năng khuyếch đại Q uan sát trong Error! Reference source not found. ta thấy các bộ khuyếch đại Raman có thể đạt được hệ số tăng ích 20-dB với công suất bơm khoảng 1W. Trong trường hợp lý tưởng, độ dịch tần giữa sóng bơm và tín hiệu sẽ tương ứng với giá trị đỉnh của hệ số khuyếch đại Raman (đạt được ở độ dịch tần khoảng 13THz). Ở vùng gần hồng ngoại, nguồn bơm phổ biến nhất là laser Nd:YAG hoạt động ở b ước sóng 1.06 m . Đối với loại nguồn bơm này khuyếch đại lớn nhất đạt được đối với tín hiệu có bước sóng khoảng 1.12 m . Tuy nhiên bước sóng thường được sử dụng nhiều nhất trong hệ thống thông tin quang WDM là ở các cửa sổ 1.3 m và 1.5 m . Phổ khuyếch đại rộng của bộ khuyếch đại Raman rất hữu ích trong việc khuyếch đại nhiều kênh đồng thời. Vào năm 1988, trong một thử nghiệm, người ta đã sử dụng một một nguồn bơm ở bước sóng 1.47 m để khuyếch đại đồng thời ba tín hiệu được lấy từ ba laser bán dẫn DFB hoạt động ở dải bước sóng 1.57 -1.58 m [2]. H ệ số khuyếch đại 5 dB đạt được ở công suất bơm 60 mW.
  2. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang Trong một thử nghiệm khác, một bộ khuyếch đại Raman được b ơm bởi một Laser bán dẫn hoạt động ở bước sóng 1.55 m , đầu ra được khuyếch đại sử dụng EDFA. Các xung bơm có độ rộng 140-ns, công suất đỉnh 1.4 W được bơm liên tục với tần số 1 kHz có khả năng khuyếch đại tín hiệu b ước sóng 1.66 m với khuyếch đại là 23 dB b ởi SRS trên 20 km sợi dịch tán sắc. Ngoài ra những bộ khuyếch đại Raman 1.3 m còn thích hợp dùng làm bộ tiền khuyếch đại cho các bộ thu quang tốc độ cao. Các bộ khuyếch đại này có thể dùng để nâng cấp dung lượng của các hệ thống sợi quang hiện có từ 2.5 Gb/s thành 10 Gb/s. Các bộ khuyếch đại Raman được phân thành khuyếch đại Raman tập trung LRA và khuyếch đại Raman phân bố DRA (Distributed Raman Amplifer). Sự khác nhau này là do cấu tạo của chúng. Đối với LRA có một thiết bị riêng biệt chế tạo bằng cách quấn khoảng 1-2 km sợi quang được pha tạp Ge hoặc Photpho để cải thiện hệ số khuyếch đại. Sợi được bơm ở bước sóng khoảng 1.45 m để khuyếch đại một tín hiệu ở bước sóng 1.55 m . Trong trường hợp bộ khuyếch đại phân bố DRA, sợi quang vừa đ ược dùng để truyền tín hiệu vừa để khuyếch đại. Trong bộ khuyếch đại DRA thường sử dụng kỹ thuật bơm ngược. Một điểm hạn chế của cả hai cấu h ình trên là cần phải sử d ụng các Laser bơm có công suất lớn. Chính vì lý do này mà bộ khuyếch đại Raman ít được sử dụng trong thập kỷ 90, khi đó phổ biến nhất là bộ khuyếch đại EDFA. Ngày nay với sự xuất hiện của các Laser công suất lớn, bộ khuyếch đại Raman hứa hẹn sẽ được sử dụng rộng rãi. Trong b ộ khuyếch đại DRA, hiện tượng tán xạ Rayleigh ảnh hưởng rất nhiều đến hiệu năng của bộ khuyếch đại. Hiệu ứng tán xạ Rayleigh xảy ra trong mọi sợi quang và là nguyên nhân chính dẫn đến suy hao. Một phần ánh sáng sẽ bị tán xạ theo hướng ngược lại do hiệu ứng tán xạ Rayleigh. Đối với hệ thống nhỏ, tán xạ Rayleigh có thể bỏ qua. Tuy nhiên,đối với các hệ thống đường dài sử dụng khuyếch đại DRA thì hiệu ứng tán xạ Rayleigh ảnh hưởng đến hiệu năng hệ thống theo hai cách. Thứ nhất, làm tăng nhiễu tổng trên toàn bộ hệ thống. Thứ hai, tán xạ Rayleigh kép của tín hiệu gây ra hiện tượng xuyên âm. Xuyên
  3. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang âm Rayleigh được khuyếch đại bởi DRA là một trong những nguyên nhân chính làm giảm công suất của hệ thống. Phần công suất tín hiệu truyền theo hướng thuận sau tán xạ Rayleigh kép được gọi là xuyên âm Rayleigh, có thể tính toán được theo công thức (2.26) z L 2 2 2 (0.1) Pf DRS  rS  dz1G ( z1 )  G ( z 2 )dz 2 0 z1 Trong đó rs ~ 10 4 km 1 là hệ số tán xạ Rayleigh và G(z) là hệ số khuyếch đại Raman ở khoảng cách z, bộ khuyếch đại có chiều dài L. Mức độ xuyên âm có thể vượt quá 1% nếu L>80 km và G(L)>10. V ì xuyên âm này sẽ đ ược tích luỹ qua nhiều bộ khuyếch đại, dẫn đến sự suy giảm công suất đối với các hệ thống có khoảng cách lớn. Bộ khuyếch đại Raman có thể làm việc ở bất kỳ bước sóng tín hiệu nào với điều kiện b ước sóng bơm phải được lựa chọn phù hợp. Đặc tính này, cùng với băng tần rất rộng, bộ khuyếch đại Raman phù hợp với các hệ thống WDM. Một đặc điểm không mong muốn của bộ khuyếch đại Raman là rất nhạy về phân cực. Nói chung, hệ số khuyếch đại tốt nhất khi tín hiệu và sóng bơm đồng phân cực . Vấn đề phân cực có thể được giải quyết bằng cách bơm b ởi nhiều sóng bơm. Một yêu cầu nữa đối với hệ thống WDM là phổ khuyếch đại phải tương đối bằng phẳng trên toàn bộ dải tần để tất cả các kênh đều được khuyếch đại như nhau. Trong thực tế phổ khuyếch đại có thể làm bằng phẳng sử dụng nhiều sóng bơm ở các bước sóng khác nhau. Mỗi sóng bơm sẽ có phổ khuyếch đại được mô tả như Error! Reference source not found.. Sự chồng lấn của nhiều phổ khuyếch đại như vậy sẽ làm cho phổ khuyếch đại tổng hợp tương đối bằng phẳng trên một vùng phổ rộng. Các bộ khuyếch đại Raman băng rộng dùng cho hệ thống WDM còn yêu cầu một số tham số khác, trong đó có sự tương tác giữa các sóng bơm. Trong thực tế sử dụng nhiều sóng bơm cũng bị ảnh hưởng bởi hiệu ứng tán xạ Raman, làm cho
  4. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang một phần công suất của các sóng bơm bước sóng ngắn chuyển sang cho các sóng bơm có bước sóng dài hơn. Sự thay đổi của công suất tín hiệu theo hướng thuận bao gồm cả tương tác giữa các sóng bơm, tán xạ Rayleigh ngược, tán xạ Raman tự phát có thể được mô tả bởi phương trình (2.27) [2]. dPf (v)     (   v)a 1 Pf ( )  Pb ( ) Pf (v)  2hvnsp (   v) d g  R dz  v    (v   )a v1 Pf ( )  Pb (  ) Pf (v)  2hvnsp (v   ) d (0.2 )  g R  v   (v) Pf (v)  rs Pb (v) Trong đó  và v là các tần số quang. nsp ()  1  exp( / k BT )1 , f và b lần lượt là ký hiệu cho hướng thuận và hướng ngược. Trong phương trình này hai biểu thức thứ nhất và thứ hai thể hiện sự tương tác, trao đổi năng lượng ở hai tần số. Đại lượng thứ ba và thứ tư biểu thị suy hao sợi quang và tán xạ Rayleigh ngược. Nhiễu gây ra do tán xạ Raman tự phát được biểu thị bằng thành phần phụ thuộc vào nhiệt độ ở trong hai tích phân. Ta cũng có thể viết một phương trình tương tự cho hướng ngược. Đ ể thiết kế bộ khuyếch đại Raman băng rộng, phải giải phương trình (2.27) để tìm hệ số khuyếch đại của từng kênh, các công suất sóng bơm đầu vào sẽ được điều chỉnh sao cho hệ số khuyếch đại là như nhau đối với tất cả các kênh. Hình 0.1 chỉ ra một ví dụ phổ khuyếch đại được tính toán cho bộ khuyếch đại Raman bằng cách sử dụng 8 laser bơm cho một sợi dịch tán sắc có chiều d ài là 25 km. Chú ý rằng tất cả các mức công suất là dưới 100 mW . Bộ khuyếch đại này có hệ số khuyếch đại khoảng 10.5 dB trên băng tần rộng 80 nm với độ gợn nhỏ hơn 0.1 dB. Bộ khuyếch đại này phù hợp với hệ thống WDM bao gồm cả băng L và băng C.
  5. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang H ình 0.1 Làm bằng phẳng phổ khuyếch đại Raman bằng cách sử dụng nhiều nguồn bơm. Tần số và công suất sóng bơm được chỉ ra ở bên phải. Các bộ khuyếch đại quang cũng có thể được thực hiện dựa vào hiệu ứng tán xạ Brillouin kích thích (SBS-Stimulated Brillouin Scattering). Nguyên lý hoạt động của các bộ khuyếch đại sử dụng SBS giống như bộ khuyếch đại dựa trên SRS, đều khuyếch đại tín hiệu quang thông qua quá trính tán xạ. Tuy nhiên bộ khuyếch đại dựa trên hiệu ứng SBS rất ít được ứng dụng trong thực tế do băng tần của chúng thường dưới 100 MHz. Ngoài ra độ dịch tần của SBS chỉ khoảng 10 GHz, do đó bước sóng bơm và tín hiệu gần như trùng nhau. Đ ặc điểm này làm cho các bộ khuyếch đại Brillouin không phù hợp với các hệ thống WDM. 2.3.2 Nhiễu trong các bộ khuyếch đại Raman Trong khuyếch đại quang Raman có bốn loại nhiễu chính N hiễu phát xạ tự phát ASE Phát xạ tự phát bổ sung vào ánh sáng tín hiệu nhiều thành phần tần số khác nhau. Về nguyên lý tất cả các loại nhiễu này có thể được loại trừ những thành phần có tần số nằm trong dải phổ của tín hiệu hữu ích. Phát xạ tự phát không những ảnh hưởng đến đặc tính nhiễu mà còn ảnh hưởng đến tăng ích quang. Mật độ phổ công suất nhiễu ASE: N2 S ase v   G  1hv (0.3) N 2  N1
  6. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang H ệ số tạp âm: 1 1 (0.4 ) NF   2 S ase (v)  hv  1  G Trong đó N 2 và N1 lần lượt là mật độ electron tại trạng thái năng lượng cao và trạng thái năng lượng thấp. Với khuyếch đại Raman N 2 N 2  N1  thường bằng 1 do khuyếch đại Raman luôn ở trạng thái gần như đảo lộn mật độ ho àn toàn. Đây là một ưu điểm của khuyếch đại Raman so với EDFA, với EDFA, N 2 N 2  N1  thư ờng lớn hơn 1. N hiễu tán xạ Rayleigh kép DRS Tán xạ Rayleigh kép tương ứng với hai quá trình tán x ạ (một cùng chiều và một ngược chiều với chiều truyền của ánh sáng tín hiệu) do sự không đồng nhất của sợi quang. Nhiễu phát xạ tự phát ASE truyền theo hướng ngược sẽ bị phản xạ lại do tán xạ Rayleigh kép và tiếp tục được khuyếch đại do quá trình tán xạ Raman kích thích. N hiễu tán xạ Rayleigh kép trong khuyếch đại Raman rất lớn do ánh sáng tán xạ Rayleigh được khuyếch đại trong quá trình truyền và khuyếch đại Raman yêu cầu độ dài sợi tăng ích Raman khá lớn. Thực tế nhiễu tán xạ Rayleigh kép làm giảm tăng ích quang cho mỗi đoạn khoảng từ 10 đến 15 dB. Đ ể giảm nhiễu tán xạ Rayleigh kép có thể sử dụng các bộ cách li giữa các bộ khuyếch đại. Ví dụ với các hệ thống sử dụng 2 bộ khuyếch đại Raman tập trung (tăng ích khoảng 30 dB ) và bộ cách ly quang hệ số tạp âm thấp hơn 5.5 dB. N hiễu do thời gian sống của electron tại trạng thái kích thích ngắn. Thời gian sống của electron trong khuyếch đại Raman ở trạng thái năng lượng kích thích ngắn chỉ khoảng 3 đến 6 fs (với EDFA là ms). Thời gian đáp ứng nhanh của quá trình tán xạ Raman làm cho cường độ ánh sáng tín hiệu bị ảnh hưởng bởi sự biến đổi cường độ ánh sáng bơm. Một phương pháp được sử dụng để giảm nhiễu do thời gian đáp ứng nhanh của tán xạ Raman là áp dụng cơ
  7. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang chế bơm ngược: ánh sáng bơm và ánh sáng tín hiệu truyền ngược chiều nhau. Với cơ chế bơm ngược thời gian của điện tử tại trạng thái năng lượng cao cân bằng với thời gian truyền qua sợi. Cũng có thể sử dụng cơ chế bơm cùng chiều cho khuyếch đại Raman. Tuy nhiên khi bơm cùng chiều công suất ánh sáng bơm phải có độ ổn định cao để giảm nhiễu tương quan cường độ RIN. Ví dụ có thể sử dụng laser Fabry-Perot thay thế cho các cách tử. N hiễu do bước sóng ánh sáng bơm và ánh sáng tín hiệu gần nhau Bình thường trong bộ khuyếch đại Raman có một phần ánh sáng bơm b ị tán xạ tự phát. Ánh sáng tán xạ tự phát này gây nhiễu cho các kênh tín hiệu có bước sóng gần bước sóng ánh sáng bơm. Theo một số kết quả nghiên cứu hiệu ứng này có thể làm cho hệ số tạp âm NF tới 3 dB với các kênh tín hiệu có bước sóng gần bước sóng b ơm. 2.3.3 Khuyếch đại Raman phân bố DRA (Distributed Raman Amplifier) Hình 0.2 - Khuyếch đại tập trung (a) và khuyếch đại phân bố (b). V ới bộ khuyếch đại Raman phân bố DRA, ánh sáng bơm được phân bố trải dài trong sợi quang. DRA tận dụng sợi quang sẵn có trong mạng như một phương tiện để khuyếch đại tín hiệu và như vậy ánh sáng sẽ được khuyếch đại đồng đều dọc theo sợi quang trên một khoảng cách lớn (Hình 0.2b).
  8. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang V ới các bộ khuyếch đại DRA, thông thường ánh sáng bơm có công suất cao được bơm theo hướng ngược để kết hợp với các bộ khuyếch đại tập trung khác như các bộ khuyếch đại quang sợi pha đất hiếm EDFA. Ư u điểm chính của DRA là cải thiện tỉ số tín hiệu trên nhiễu SNR và giảm tính phi tuyến. Hình 0.3- Công suất tín hiệu trong hệ thống sử dụng DRA H ình 0.3 biểu diễn mức công suất ánh sáng tín hiệu của hệ thống khuyếch đại theo chu kỳ. Đỉnh hình răng cưa tương ứng với các điểm khuyếch đại tập trung. Đường nét đứt là biểu diễn công suất ánh sáng tín hiệu trong hệ thống chỉ sử dụng các bộ khuyếch đại tập trung với tăng ích cao. Đường cong trên hình 0.3 tương ứng với công suất ánh sáng tín hiệu trong trường hợp sử dụng bộ khuyếch đại DRA kết hợp với bộ khuyếch đại quang tập trung có tăng ích nhỏ. Khi sử dụng DRA mức công suất tín hiệu dọc theo sợi quang sẽ đồng đều hơn. N ếu kết hợp các bộ khuyếch tập trung mức ánh sáng tín hiệu đỉnh không quá lớn. Như vậy sẽ tránh được các hiệu ứng phi tuyến. Đồng thời mức công suất ánh sáng tín hiệu cũng không xuống thấp quá do ảnh hưởng của suy hao do đó tỉ số SNR được cải thiện. Tỉ số SNR cao tương ứng với khả năng tăng khoảng cách giữa các bộ khuyếch đại hoặc tăng dung lượng của kênh tín hiệu. Khoảng cách giữa các bộ khuyếch đại quang tập trung thường khoảng 80 km, bằng cách sử dụng
  9. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang DRA hiệu năng của hệ thống tương đương với sử dụng khuyếch đại quang tập trung với khoảng cách giữa chúng là 35 đ ến 38 km [5], [8]. N goài khả năng tăng khoảng cách giữa các bộ khuyếch đại hoặc tăng tốc độ bit DRA còn được sử dụng trong hệ thống WDM để giảm khoảng cách giữa các kênh ho ặc hoạt động tại bước sóng tán sắc không. Một số thí nghiệm với DRA [5], [8]:  Terahara và các cộng sự đã triển khai hệ thống sử dụng DRA hai băng (băng C và băng L) cho hệ thống WDM cự ly d ài. Trong hệ thống này tốc độ truyền là 12.8 Tb/s với khoảng cách là 840 km. Hệ thống sử dụng sợi đơn mode chuẩn với khoảng cách giữa các bộ khuyếch đại là 140 km (tăng 60 km so với hệ thống thông thường). Với bộ khuyếch đại DRA hai băng, tỉ số giữa tín hiệu trên tạp âm quang OSNR tăng 3.7 dB tại băng C và băng L.  Các thí nghiệm của Nielsen thực hiện trên hệ thống 3.28 Tb/s (82 x 40 Gb/s mã NRZ) với sợi dịch tán sắc có chiều dài 3x100 km. H ệ thống bao gồm 40 kênh WDM băng C (khoảng cách giữa các kênh là 100 GHz) và 42 kênh WDM băng L (khoảng cách giữa các kênh cũng là 100 GHz). H ệ thống này có tỉ số lỗi bit (BER) dưới 10 10 dù các kênh đều không sử dụng sửa lỗi trước (forward error correction)  H. Suzuki thực hiện nghiên cứu hiệu ứng phi tuyến trên hệ thống DWDM 1Tb/s băng C (100 x 10Gb/s, khoảng cách giữa các kênh là 25 Ghz) có khoảng cách 320 km (4x80 km) và sử dụng sợi dịch tán sắc DSF. Với việc sử dụng DRA và ghép kênh đan xen phân cực, ảnh hưởng của hiệu ứng trộn bốn sóng FWM không đáng kể. Bên cạnh các ưu điểm vừa nêu, khuyếch đại Raman tập trung cũng có một số nhược điểm:  Sợi quang có chiều d ài hiệu dụng thấp Leff được xác định từ hệ số suy hao của sợi. Trong các bộ khuyếch đại DRA chiều dài hiệu dụng của sợi quang
  10. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang thường nhỏ hơn 40 km.Chiều d ài hiệu dụng thấp làm giảm khả năng tăng kho ảng cách giữa các bộ khuyếch đại.  DRA có công suất ánh sáng b ơm rất cao, ví dụ để tối ưu hoá m ức nhiễu công suất ánh sáng bơm với sợi dịch tán sắc khoảng 580 mW và 1.28 W với sợi đơn mode chuẩn. Với mức công suất ánh sáng bơm cao như vậy các thiết bị quang như connector rất dễ bị hư hại.  DRA rất nhạy cảm với các điều kiện môi trường như nhiệt độ, độ ẩm… và sự thay đổi cơ học.  Một vấn đề đáng được quan tâm khác đối với DRA là nhiễu tán xạ Rayleigh kép. Các bộ khuyếch đại DRA thường có nhiễu DRS cao hơn so với các bộ khuyếch đại Raman tập trung khi sử dụng cùng loại sợi và có chiều dài sợi như nhau. N hững vấn đề trên làm giảm tính ưu việt của DRA. Tuy nhiên do lợi ích từ tỉ số SNR và giảm hiệu ứng phi tuyến của DRA là rất lớn nên DRA đ ã được sử dụng khá rộng rãi trong các hệ thống cự ly d ài. 2.3.4 Khuyếch đại Raman tập trung LRA (Lumped Raman Amplifier) Hình 0.4- Khuyếch đại Raman tập trung. Bộ khuyếch đại Raman tập trung LRA là một khối đ ơn. Trong bộ khuyếch đại Raman tập trung tất cả công suất ánh sáng bơm được tập trung trong một khối. Hình 0.4 là một thí dụ kết nối bộ khuyếch đại Raman tập trung trong hệ
  11. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang thống thông tin quang. Trong sơ đồ trên ánh sáng bơm được giữ trong bộ khuyếch đại bằng các bộ cách ly xung quanh bộ khuyếch đại với chiều dài sợi tăng ích Raman khoảng vài km. Như vậy khác với bộ khuyếch đại Raman phân bố ánh sáng bơm không đi vào sợi quang từ bên ngoài bộ khuyếch đại. (dB) H ình 0.5- Tăng ích của bộ khuyếch đại Raman tập trung. Đặc điểm đáng lưu ý nhất của khuyếch đại Raman tập trung đó là khả năng sử dụng dải bước sóng mới mà tại các dải băng này EDFA không thể hoạt động. Khả năng sử dụng băng S với khuyếch đại quang Raman Trong các dải băng cửa sổ thông tin khuyếch đại quang sợi EDFA chỉ có thể hoạt động tại băng C và băng L mà không thể hoạt động tại băng S (1480-1530 nm). V ới khuyếch đại Raman bước sóng khuyếch đại được quyết định bởi b ước sóng ánh sáng bơm và như vậy khuyếch đại Raman có thể hoạt động ở bất kỳ vùng bước sóng nào có suy hao thấp. Hiện nay với kỹ thuật làm khô, suy hao sợi quang do hấp thụ nước tại bước sóng 1390 nm đã giảm mạnh. Như vậy kết hợp với sử dụng các loại sợi quang mới, khuyếch đại Raman đã không những chỉ có thể hoạt động tại băng C mà còn có khả năng sử dụng khác trong dải 1280 đến 1550 nm.
  12. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang Hình 0.6- Sự phụ thuộc của suy hao theo bước sóng Sự phát triển của DWDM không những cho phép tăng dung lượng của truyền dẫn của mỗi kênh mà còn tăng số kênh truyền dẫn trên một sợi quang. Hiện nay các hệ thống WDM và DWDM hầu hết đều sử dụng băng C và băng L. Khi nhu cầu về số kênh truyền dẫn cho DWDM tăng thì các dải băng tần mới được đưa vào sử dụng. Trong các dải băng khả chuyển có băng S là quan trọng nhất. Băng S có đặc tính suy hao do hấp thụ và suy hao do uốn cong đối với sợi đơm mode chuẩn tốt hơn so với băng L. Băng S cũng có tán sắc nhỏ hơn băng L kho ảng 30 %. Một số loại khuyếch đại được nghiên cứu ứng dụng cho băng S như là khuyếch đại quang bán dẫn, khuyếch đại quang sợi pha Thilium nhưng chỉ có khuyếch đại Raman là giải pháp tối ưu cho vấn đề này [8]. Để tìm hiểu về khả năng sử dụng băng S của LRA ta nghiên c ứu hệ thống thử nghiệm của B.A. Puc lần đầu tiên sử dụng khuyếch đại Raman tập trung bù tán sắc băng S SLRA ( sợi tăng ích có tán sắc âm tại băng S, mỗi bộ SLRA có thể bù tán sắc cho 75 km sợi SSMF).
  13. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang SLRA #1 SLRA #2 SLRA #3 SLRA #4 98 km 89 km 90 km 91 km Tx SLRA #8 SLRA #7 SLRA #6 SLRA #5 80 km 80 km 80 km 90 km SLRA #9 SLRA #10 SLRA #11 89 km 80 km Rx Hình 0.7- H ệ thống thử nghiệm SLRA của A. Puc. Trong hệ thống này 11 bộ SLRA được sử dụng để truyền 20 kênh băng S (từ 493.36 đến 1521.77 nm với khoảng cách giữa các kênh là 200 GHz) trên sợi đơn mode chuẩn có chiều dài 867 km, với tốc độ mỗi kênh là 10.67 Gb/s. Với suy hao trung bình mỗi chặng khoảng 21 dB , mức công suất tín hiệu ra trung bình của mỗi bộ SLRA là 14 dBm. Tỉ số tín hiệu trên tạp âm quang OSNR đạt kho ảng 20.7 dB . Với giá trị này các kênh đ ều có BER  10 12 khi không sử dụng các kỹ thuật sửa lỗi. Khi sử dụng kỹ thuật sửa lỗi trước Reed -Solomon tỉ số SNR tăng khoảng 5 dB. Thí nghiệm của B. A. Puc lần đầu tiên đã chứng minh khả năng của khuyếch đại Raman tập trung. Các thử nghiệm sau này tiếp tục đ ược nghiên cứu đã khẳng định SLRA là công nghệ chìa khoá cho sự mở rộng băng tần hoạt động của mạng thông tin quang sang dải băng S. 2.3.5 Bộ khuyếch đại quang lai ghép Raman/EDFA
  14. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang Hình 0.8 - Khuyếch đại quang lai ghép EDFA/Raman. Như trong phần (2.3.6) đã trình bày, khuyếch đại quang Raman phân bố DRA có thể được sử dụng kết hợp với các bộ khuyếch đại tập trung khác điển hình trong số đó là kết hợp với bộ khuyếch đại EDFA hình thành bộ khuyếch đại quang lai ghép Raman/EDFA. Loại khuyếch đại quang này có thể thay thế bộ khuyếch đại EDFA trong đó khuyếch đại Raman phân bố đóng vai trò của một bộ khuyếch đại tạp âm nhỏ (tiền khuyếch đại). 2.1 Ứng dụng bộ khuyếch đại quang Raman trong hệ thống WDM Khuyếch đại quang Raman mang lại một nền tảng đơn giản và đơn nhất cho các yêu cầu của các bộ khuyếch đại quang trong mạng thông tin quang cự ly dài và cực dài. Khuyếch đại quang Raman có thể hoạt động với băng tần rộng và tại các tần số mà các bộ khuyếch đại quang khác không thể hoạt động. Ví dụ băng tần tăng ích 100 nm có thể sử dụng trong bất kỳ dải nào trong kho ảng từ 1300- 1650 nm. Thêm vào đó các bộ khuyếch đại Raman băng rộng hiện nay có băng tần lên tới 136 nm nhờ sử dụng kỹ thuật đan xen bước sóng ánh sáng bơm và ánh sáng tín hiệu. Các bộ khuyếch đại quang Raman không những có thể sử dụng như b ộ tiền khuyếch đại tạp âm nhỏ cho các bộ khuyếch đại quang sợi pha đất hiếm EDFA mà chúng còn có thể sử dụng cho toàn bộ yêu cầu khuyếch đại của hệ thống. Trong các hệ thống DWDM cự ly dài và siêu dài, khuyếch đại Raman chiếm ưu thế do sự đơn giản và mềm dẻo, linh hoạt. Ví dụ khuyếch đại Raman hỗ trợ hệ thống có độ rộng băng tần 100 nm, nó sẽ bao gồm các băng S, C và L. N ếu các hệ thống DWDM trong tương lai truyền dẫn trên cả ba băng S, C và L mà vẫn sử dụng các bộ khuyếch đại quang tập trung như hiện nay thì hệ thống này phải cần thêm các bộ kết hợp băng tần, bộ chia băng tần và ba bộ khuyếch đại tập trung như trên hình 0.9.
  15. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang H ình 0.9- Khuyếch đại quang trong hệ thống DWDM đa băng. Trong hệ thống trên cũng cần một bộ khuyếch đại Raman phân bố ba băng đóng vai trò bộ tiền khuyếch đại. Mỗi bộ khuyếch đại tập trung ho ạt động tại các băng khác nhau cần có một Laser bơm, một mạch điều khiển và hệ thống giám sát riêng. Các b ộ lọc băng cũng không phải là lý tưởng nên cần có thêm các kho ảng bước sóng bảo vệ xung quanh mỗi băng. Do nhiễu và suy hao từ các bộ ghép tách băng hệ thống cần tăng quỹ công suất đường truyền. Hình 0.10- Hệ thống WDM to àn Raman. Với hệ thống to àn Raman cấu hình hệ thống đơn giản hơn rất nhiều (hình 0.10 ). Trong hệ thống này chỉ cần một bộ khuyếch đại Raman tập trung băng rộng đi kèm với một bộ khuyếch đại Raman phân bố băng rộng là có thể đáp ứng yêu cầu. Bộ khuyếch đại Raman phân bố băng rộng có thể không khác với hệ thống trên. Tuy nhiên, bộ khuyếch đại tập trung thì đơn giản hơn rất nhiều: số lượng nguồn bơm ít hơn, một hệ thống giám sát và đặc biệt là không có các bộ hợp và chia băng. Đồng thời có thể kết hợp sợi tăng ích và sợi bù tán sắc trong bộ khuyếch đại tập trung để nâng cao hiệu năng của hệ thống.
  16. Đồ án tốt nghiệp Đại học Chương 2. Ứng dụng SRS khuyếch đại tín hiệu quang Trở ngại lớn nhất cho việc sử dụng khuyếch đại Raman trong mạng viễn thông đó là hiệu quả thấp so với EDFA. Tuy nhiên, khi tốc độ bit và tổng số kênh tăng lên, khuyếch đại Raman càng trở nên hấp dẫn hơn. Tăng ích của khuyếch đại Raman lớn hơn khi công suất bơm lớn, điều này được đáp ứng bởi các hệ thống trong tương lai Trong các hệ thống WDM ban đầu với ít hơn 32 kênh, công suất bơm vào kho ảng 100 mW, đây là khoảng mà khuyếch đại Raman có hiệu quả thấp hơn EDFA. Trong những năm 1999-2001, các hệ thống WDM có từ 64 đến 160 kênh với công suất khoảng d ưới 200 mW, khi đó khuyếch đại Raman có hiệu quả tương đương với EDFA 980nm. V ào năm 2002, khi hệ thống WDM 240 kênh xuất hiện, công suất ánh sáng tín hiệu ra đạt trên 200 mW [5], [8]. Trong hệ thống thông tin quang thế hệ mới, khuyếch đại Raman sẽ chiếm ưu thế vể hiệu quả ánh sáng bơm hơn khi so sánh vơi EDFA có ánh sáng bơm 1480 nm [5]. Điều này được chỉ ra trên hình 2.18 bằng cách so sánh hiệu suất chuyển đổi công suất PCE  ( Pout  Pin ) / Ppump  100% của EDFA ánh sáng bơm 1480nm và khuyếch đại Raman với công suất vào 200 mW .
  17. Đồ án tốt nghiệp Đại học Kết luận Công suất bơm Hình 0.11- Hiệu suất chuyển đổi công suất của RA và EDFA [5]
nguon tai.lieu . vn