Xem mẫu

  1. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s GIÁO D C & ðÀO T O ð NG NAI S Trư ng THPT BC Lê H ng Phong Giáo viên th c hi n NGUY N T T THU Năm h c: 2008 – 2009 -1-
  2. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s M CL C M C L C.................................................................................................................................... 1 ð U .............................................................................................................................. 3 L IM D NG CSC – CSN ð XÂY D NG CÁCH TÌM CTTQ C A M T S I. S D NG CÓ CÔNG TH C TRUY H I ð C BI T. ............................................................ 4 DÃY S D NG PHÉP TH LƯ NG GIÁC ð XÁC ð NH CTTQ C A DÃY S ........... 24 II. S III. NG D NG BÀI TOÁN TÌM CTTQ C A DÃY S VÀO GI I M T S BÀI TOÁN V DÃY S -T H P ............................................................................................... 30 BÀI T P ÁP D NG ................................................................................................................. 41 K T LU N – KI N NGH ...................................................................................................... 45 TÀI LI U THAM KH O ........................................................................................................ 46 -2-
  3. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s L IM ð U Trong chương trình toán h c THPT các bài toán liên quan ñ n dãy s là m t ph n quan tr ng c a ñ i s và gi i tích l p 11 , h c sinh thư ng g p nhi u khó khăn khi gi i các bài toán liên qua ñ n dãy s và ñ c bi t là bài toán xác ñ nh công th c s h ng t ng quát c a dãy s . Hơn n a m t s l p bài toán khi ñã xác ñ nh ñư c công th c t ng quát c a dãy s thì n i dung c a bài toán g n như ñư c gi i quy t. Do ñó xác ñ nh công th c t ng quát c a dãy s chi m m t v trí nh t ñ nh trong các bài toán dãy s . Chuyên ñ “M t s phương pháp xác ñ nh công th c t ng quát c a dãy s ” nh m chia s v i các b n ñ ng nghi p m t s kinh nghi m gi i bài toán xác ñ nh CTTQ c a dãy s mà b n thân ñúc rút ñư c trong quá trình h c t p và gi ng d y. N i dung c a chuyên ñ ñư c chia làm ba m c : I: S d ng CSC – CSN ñ xây d ng phương pháp tìm CTTQ c a m t s d ng dãy s có d ng công th c truy h i ñ c bi t. II: S d ng phương pháp th lư ng giác ñ xác ñ nh CTTQ c a dãy s III: ng d ng c a bài toán xác ñ nh CTTQ c a dãy s vào gi i m t s bài toán v dãy s - t h p . M t s k t qu trong chuyên ñ này ñã có m t s sách tham kh o v dãy s , tuy nhiên trong chuyên ñ các k t qu ñó ñư c xây d ng m t cách t nhiên hơn và ñư c s p x p t ñơn gi n ñ n ph c t p giúp các em h c sinh n m b t ki n th c d dàng hơn và phát tri n tư duy cho các em h c sinh. Trong quá trình vi t chuyên ñ , chúng tôi nh n ñư c s ñ ng viên, giúp ñ nhi t thành c a BGH và quý th y cô t Toán Trư ng THPT BC Lê H ng Phong. Chúng tôi xin ñư c bày t lòng bi t ơn sâu s c. Vì năng l c và th i gian có nhi u h n ch nên chuyên ñ s có nh ng thi u sót. R t mong quý Th y – Cô và các b n ñ ng nghi p thông c m và góp ý ñ chuyên ñ ñư c t t hơn. -3-
  4. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s M T S PHƯƠNG PHÁP XÁC ð NH CÔNG TH C T NG QUÁT C A DÃY S D NG CSC – CSN ð XÂY D NG CÁCH TÌM CTTQ C A M T S I. S D NG DÃY S CÓ CÔNG TH C TRUY H I ð C BI T. Trong m c này chúng tôi xây d ng phương pháp xác ñ nh CTTQ c a m t s d ng dãy s có công th c truy h i d ng ñ c bi t. Phương pháp này ñư c xây d ng d a trên các k t qu ñã bi t v CSN – CSC , k t h p v i phương pháp ch n thích h p. Trư c h t chúng ta nh c l i m t s k t qu ñã bi t v CSN – CSC . 1. S h ng t ng quát c a c p s c ng và c p s nhân 1.1: S h ng t ng quát c a c p s c ng ð nh nghĩa: Dãy s (un ) có tính ch t un = un −1 + d ∀n ≥ 2 , d là s th c không ñ i g i là c p s c ng . d : g i là công sai c a CSC; u1 : g i s h ng ñ u, un g i là s h ng t ng quát c a c p s ð nh lí 1: Cho CSC (un ) . Ta có : un = u1 + (n − 1)d (1). ð nh lí 2: G i Sn là t ng n s h ng ñ u c a CSC (un ) có công sai d. Ta có: n Sn = [2u + (n − 1)d ] (2). 21 1. 2: S h ng t ng quát c a c p s nhân ð nh nghĩa: Dãy s (un ) có tính ch t un +1 = q.un ∀n ∈ ℕ * g i là c p s nhân công b i q. n −1 ð nh lí 3: Cho CSN (un ) có công b i q . Ta có: un = u1q (3). ð nh lí 4: G i Sn là t ng n s h ng ñ u c a CSN (un ) có công b i q . Ta có: 1 - qn Sn = u1 (4). 1 -q -4-
  5. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s 2. Áp d ng CSC – CSN ñ xác ñ nh CTTQ c a m t s d ng dãy s ñ c bi t Ví d 1.1: Xác ñ nh s h ng t ng quát c a dãy s (un ) ñư c xác ñ nh b i: u1 = 1, un = un −1 − 2 ∀n ≥ 2 . Gi i: Ta th y dãy (un ) là m t CSC có công sai d = −2 . Áp d ng k t qu (1) ta có: un = 1 − 2(n − 1) = −2n + 3 . Ví d 1.2: Xác ñ nh s h ng t ng quát c a dãy s (un ) ñư c xác ñ nh b i: u1 = 3, un = 2un −1 ∀n ≥ 2 . Gi i: Ta th y dãy (un ) là m t CSN có công b i q = 2 . Ta có: un = 3.2n −1 . Ví d 1.3: Xác ñ nh s h ng t ng quát c a dãy (un ) ñư c xác ñ nh b i: u1 = −2, un = 3un −1 − 1 ∀n ≥ 2 . Gi i: Trong bài toán này chúng ta g p khó khăn vì dãy (un ) không ph i là CSC hay CSN! Ta th y dãy (un ) không ph i là CSN vì xu t hi n h ng s −1 VT. Ta tìm cách làm m t −1 ñi và chuy n dãy s v CSN. 31 Ta có: −1 = − + nên ta vi t công th c truy h i c a dãy như sau: 22 1 3 1 un − = 3un −1 − = 3(un −1 − ) (1). 2 2 2 1 5 ð t vn = un − ⇒ v1 = − và vn = 3vn −1 ∀n ≥ 2 . Dãy (vn ) là CSN công b i q = 3 2 2 5 1 5 1 ⇒ vn = v1.q n −1 = − .3n −1 . V y un = vn + = − .3n + ∀n = 1,2,...,.. . 2 2 2 2 31 Nh n xét: M u ch t cách làm trên là ta phân tích −1 = − + ñ chuy n công th c 22 truy h i c a dãy v (1), t ñó ta ñ t dãy ph ñ chuy n v dãy (vn ) là m t CSN. Tuy nhiên vi c làm trên có v không t nhiên l m! Làm th nào ta bi t phân tích 31 −1 = − + ? Ta có th làm như sau: 22 -5-
  6. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s 1 Ta phân tích −1 = k − 3k ⇒ k = . 2 u = x 0  V i cách làm này ta xác ñ nh ñư c CTTQ c a dãy (un ) :  1 . un = aun −1 + b ∀n ≥ 2   Th t v y: * N u a = 1 thì dãy (un ) là CSC có công sai d = b nên un = u1 + (n − 1)b . ab b * N u a ≠ 1 , ta vi t b = − . Khi ñó công th c truy h i c a dãy ñư c vi t như a −1 a −1 b b b b )a n −1 sau: un + = a(un −1 + ) , t ñây ta có ñư c: un + = (u1 + a −1 a −1 a −1 a −1 a n −1 − 1 Hay un = u1a n −1 + b . a −1 V y ta có k t qu sau: D ng 1: Dãy s (un ) : u1 = x 0 , un = aun −1 + b ∀n ≥ 2 (a,b ≠ 0 là các h ng s ) có CTTQ là: u1 + (n − 1)b khi a = 1  un =  a n −1 − 1 . n −1 +b khi a ≠ 1 u1.a a −1  Ví d 1.4: Xác ñ nh CTTQ c a dãy (un ) ñư c xác ñ nh : u1 = 2; un = 2un −1 + 3n − 1 . Gi i: ð tìm CTTQ c a dãy s ta tìm cách làm m t 3n − 1 ñ chuy n v dãy s là m t CSN. Mu n làm v y ta vi t : 3n − 1 = −3n − 5 + 2 3(n − 1) + 5 (2).   Khi ñó công th c truy h i c a dãy ñư c vi t như sau: un + 3n + 5 = 2 un + 3(n − 1) + 5  .   ð t vn = un + 3n + 5 , ta có: v1 = 10 và vn = 2vn −1 ∀n ≥ 2 ⇒ vn = v1.2n −1 = 10.2n −1 V y CTTQ c a dãy (un ) : un = vn − 3n − 5 = 5.2n − 3n − 5 ∀n = 1,2, 3,... . Chú ý : 1) ð phân tích ñư c ñ ng th c (2), ta làm như sau: -6-
  7. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s a − b = 2 a = −3   3n − 1 = an + b − 2 a(n − 1) + b  . Cho n = 1; n = 2 ta có:  ⇔ .   −b = 5 b = −5     u ()  2) Trong trư ng h p t ng quát dãy un :  1 , trong ñó f (n ) un = aun −1 + f (n ) ∀n ≥ 2   là m t ña th c b c k theo n , ta xác ñ nh CTTQ như sau: Phân tích f (n ) = g(n ) − ag(n − 1) (3) v i g(n ) cũng là m t ña th c theo n . Khi ñó ta có: un − g(n ) = a un −1 − g(n − 1) = ... = a n −1 u1 − g(1)     n −1 V y ta có: un = u1 − g (1) a + g (n ) .   V n ñ còn l i là ta xác ñ nh g(n ) như th nào ? Ta th y : *N u a = 1 thì g(n ) − ag(n − 1) là m t ña th c có b c nh hơn b c c a g(n ) m t b c và không ph thu c vào h s t do c a g(n ) , mà f (n ) là ña th c b c k nên ñ có (3) ta ch n g(n ) là ña th c b c k + 1 , có h s t do b ng không và khi ñó ñ xác ñ nh g(n ) thì trong ñ ng th c (3) ta cho k + 1 giá tr c a n b t kì ta ñư c h k + 1 phương trình, gi i h này ta tìm ñư c các h s c a g(n ) . * N u a ≠ 1 thì g(n ) − ag(n − 1) là m t ña th c cùng b c v i g(n ) nên ta ch n g(n ) là ña th c b c k và trong ñ ng th c (3) ta cho k + 1 giá tr c a n thì ta s xác ñ nh ñư c g(n ) . V y ta có k t qu sau: u = x 0  D ng 2: ð xác ñ nh CTTQ c a dãy (un ) ñư c xác ñ nh b i:  1 , trong un = a.un −1 + f (n )  ñó f (n ) là m t ña th c b c k theo n ; a là h ng s . Ta làm như sau: Ta phân tích: f (n ) = g(n ) − a.g(n − 1) v i g(n ) là m t ña th c theo n . Khi ñó, ta ñ t vn = un − g(n ) ta có ñư c: un = u1 − g(1) a n −1 + g(n ) .   Lưu ý n u a = 1 , ta ch n g(n ) là ña th c b c k + 1 có h s t do b ng không, còn n u a ≠ 1 ta ch n g(n ) là ña th c b c k . u = 2  Ví d 1.5: Cho dãy s (un ) :  1 . Tìm CTTQ c a dãy (un ) . un = un −1 + 2n + 1   Gi i: Ta phân tích 2n + 1 = g(n ) − g(n − 1) = a n 2 − (n − 1)2  + b n − (n − 1)     -7-
  8. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s ( trong ñó g(n ) = an 2 + bn ).  −a + b = 1 a = 1   Cho n = 0, n = 1 ta có h :  ⇔ ⇒ g(n ) = n 2 + 2n .  a +b = 3 b =2     ⇒ un = n 2 + 2n − 1 . u1 = 1  Ví d 1.6: Cho dãy s (un ) :  .Tìm CTTQ c a dãy (un ) . un = 3un −1 + 2n ; n = 2, 3,...   Gi i: Ta v n b t chư c cách làm trong các ví d trên, ta phân tích: 2n = a.2n − 3a.2n −1 . Cho n = 1 , ta có: a = −2 ⇒ 2n = −2.2n + 3.2.2n −1 Nên ta có: un + 2.2n = 3(un −1 + 2.2n −1 ) = ... = 3n −1(u1 + 4) V y un = 5.3n −1 − 2n +1 . Chú ý : Trong trư ng h p t ng quát dãy (un ) : un = a.un −1 + b.α n , ta phân tích α n = k .α n − ak .α n −1 v i (a ≠ α ) . ( ) ( ) Khi ñó: un − kb.α n = a un −1 − kb.α n −1 = ... = a n −1 u1 − bk Suy ra un = a n −1(u1 − bk ) + bk .α n . Trư ng h p α = a , ta phân tích α n = n.α n − α (n − 1).α n −1 ( ) ⇒ un − bn.α n = α un −1 − b(n − 1).α n −1 = ... = α n −1(u1 − bα ) ⇒ un = b(n − 1)α n + u1α n −1 . V y ta có k t qu sau. u1  D ng 3: ð xác ñ nh CTTQ c a dãy (un ) :  , ta làm như un = a.un −1 + b.α n ∀n ≥ 2   sau: • N u a = α ⇒ un = b(n − 1)α n + u1α n −1 . • N u a ≠ α , ta phân tích α n = k .α n − ak .α n −1 . Khi ñó: un = a n −1(u1 − bk ) + bk .α n α Ta tìm ñư c: k = . α −a -8-
  9. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s u1 = −2  Ví d 1.7: Tìm CTTQ c a dãy (un ) :  . un = 5un −1 + 2.3n − 6.7n + 12 ; n = 2, 3,...    3 k = − 3n = k .3n − 5k .3n −1   2 cho n = 1 , ta ñư c:  Gi i: Ta có:  n n −1 7 = l .7 − 5l .7 n 7 l =    2 Hơn n a 12 = −3 + 5.3 nên công th c truy h i c a dãy ñư c vi t l i như sau: ( ) un + 3.3n + 21.7n + 3 = 5 un −1 + 3.3n −1 + 21.7n −1 + 3 = ... = 5n −1 (u1 + 9 + 147 + 3) V y un = 157.5n −1 − 3n +1 − 3.7n +1 − 3 . u1 = 1  Ví d 1.8: Tìm CTTQ c a dãy (un ) :  . un = 2un −1 + 3n − n; ∀n ≥ 2   3n = 3.3n − 2.3.3n −1  Gi i: Ta phân tích:  nên ta vi t công th c truy h i c a dãy n = −n − 2 + 2 (n − 1) + 2      như sau: un − 3.3n − n − 2 = 2 un −1 − 3.3n −1 − (n − 1) − 2 = ... = 2n −1(u1 − 12)   V y un = −11.2n −1 + 3n +1 + n + 2 . u1 = p  D ng 4: ð xác ñ nh CTTQ c a dãy (un ) :  , trong un = a.un −1 + b.α n + f (n ); ∀n ≥ 2   ñó f (n ) là ña th c theo n b c k , ta phân tích α n và f (n ) như cách phân tích d ng 2 và d ng 3. Ví d 1.9: Xác ñ nh CTTQ c a dãy (un ) : u0 = −1, u1 = 3, un = 5un −1 − 6un − 2 ∀n ≥ 2. Gi i: ð xác ñ nh CTTQ c a dãy s trên, ta thay th dãy (un ) b ng m t dãy s khác là m t CSN. Ta vi t l i công th c truy h i c a dãy như sau: -9-
  10. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s x + x 2 = 5  un − x1.un −1 = x 2 (un −1 − x1un − 2 ) , do ñó ta ph i ch n x1, x 2 :  1 hay x1, x 2 là x1x 2 = 6   nghi m phương trình : x 2 − 5x + 6 = 0 ⇔ x = 2; x = 3 . Ta ch n x1 = 2; x 2 = 3 . Khi ñó: un − 2un −1 = 3(un −1 − 2un − 2 ) = ... = 3n −1(u1 − 2u 0 ) = 5.3n −1 ⇒ un = 2un −1 + 5.3n −1 . S d ng k t qu d ng 3, ta tìm ñư c: un = 5.3n − 6.2n . Chú ý : Tương t v i cách làm trên ta xác ñ nh CTTQ c a dãy (un ) ñư c xác ñ nh b i: u 0 ; u1  , trong ñó a,b là các s th c cho trư c và a 2 − 4b ≥ 0  un − a.un −1 + b.un − 2 =0 ∀n ≥ 2  như sau: G i x1, x 2 là hai nghi m c a phương trình : x 2 − ax + b = 0 (4) ( phương trình này ñư c g i là phương trình ñ c trưng c a dãy). Khi ñó: un − x1.un −1 = x 2 (un −1 − x1.un − 2 ) = ... = x 2 −1(u1 − x1.u0 ) . n S d ng k t qu c a d ng 3, ta có các trư ng h p sau: x .u − u1 n u1 − x .u0 n • N u x1 ≠ x 2 thì un = 2 0 x1 + x 2 . Hay un = k .x1 + l .x 2 , trong ñó n n x 2 − x1 y −x k + l = u0  k, l là nghi m c a h :  . x1.k + x 2 .l = u1   u a  au • N u x1 = x 2 = α thì un = α n −1  0 + (u1 − 0 )n  , hay un = (kn + l )α n −1 , trong 2 2    l = α .u0  ñó k, l là nghi m c a h :  . k + l = u1   V y ta có k t qu sau: u ; u  D ng 5: ð xác ñ nh CTTQ c a dãy (un ) :  0 1 , trong un − a.un −1 + b.un − 2 = 0 ∀n ≥ 2   ñó a,b, c là các s th c khác không; a 2 − 4b ≥ 0 ta làm như sau: G i x1, x 2 là nghi m c a phương trình ñ c trưng: x 2 − ax + b = 0 . - 10 -
  11. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s k + l = u0  • N u x1 ≠ x 2 thì un = k .x1 + l .x 2 , trong ñó k, l là nghi m c a h :  n n . x1.k + x 2 .l = u1   l = α .u 0  • N u x1 = x 2 = α thì un = (kn + l )α n −1 , trong ñó k, l là nghi m c a h :  . k + l = u1   u = 1; u1 = 2 ()  un ñư c xác ñ nh b i :  0 Ví d 1.10: Cho dãy s . un +1 = 4un + un −1 ∀n ≥ 1   Hãy xác ñ nh CTTQ c a dãy (un ) . Gi i: Phương trình x 2 − 4x − 1 = 0 có hai nghi m x1 = 2 + 5; x 2 = 2 − 5 . k + l = 1  ⇒ un = k .x1 + l .x 2 . Vì u 0 = 1; u1 = 2 nên ta có h :  n n (2 + 5)k + (2 − 5)l = 2  1 1 (2 + 5)n + (2 − 5)n  . ⇔k =l = V y un = .   2 2 u = 1; u1 = 3  Ví d 1.11: Xác ñ nh CTTQ c a dãy: (un ) :  0 . un − 4un −1 + 4un − 2 = 0 ∀n = 2, 3,...  Gi i: Phương trình ñ c trưng x 2 − 4x + 4 = 0 có nghi m kép x = 2 nên un = (kn + l )2n −1 l = 2  Vì u 0 = 1; u1 = 3 nên ta có h :  ⇔ k = 1; l = 2 . k + l = 3  V y un = (n + 2)2n −1 . u0 = −1; u1 = 3  Ví d 1.12: Cho dãy (un ) :  . Xác ñ nh un − 5un −1 + 6un − 2 = 2n + 2n + 1; ∀n ≥ 2 2  CTTQ c a dãy (un ) . Gi i: V i cách làm tương t như Ví d 1.4, ta phân tích: 2n 2 + 2n + 1 = - 11 -
  12. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s = (kn 2 + ln + t ) − 5 k (n − 1)2 + l (n − 1) + t  + 6 k (n − 2)2 + l (n − 2) + t  (5)     19k − 7l + 2t = 1 k = 1   (5) cho n = 0; n = 1; n = 2 ta có h : 7k − 5l + 2t = 5 ⇔ l = 8 .  −k − 3l + 2t = 13 t = 19   ð t vn = un − n 2 − 8n − 19 ⇒ v0 = −20; v1 = −25 và vn − 5vn −1 + 6vn − 2 = 0 α + β = −20 α = 15   ⇒ vn = α .3n + β .2n . Ta có h :  ⇔ 3α + 2β = −25  β = −35   ⇒ vn = 15.3n − 35.2n ⇒ un = 15.3n − 35.2n + n 2 + 8n + 19 . u ; u  Chú ý : ð xác ñ nh CTTQ c a dãy s : (un ) :  0 1 , un + 1 + a.un + b.un −1 = f (n ) ; ∀n ≥ 2  ( trong ñó f (n ) là ña th c b c k theo n và a 2 − 4b ≥ 0 ) ta làm như sau: • Ta phân tích f (n ) = g(n ) + ag(n − 1) + bg(n − 2) (6) r i ta ñ t vn = un − g(n ) v = u0 − g(0); v1 = u1 − g(1)  Ta có ñư c dãy s (vn ) :  0 . ðây là dãy s mà ta ñã xét vn + avn −1 + bvn − 2 = 0 ∀n ≥ 2   trong d ng 5. Do ñó ta s xác ñ nh ñư c CTTQ c a vn ⇒ un . • V n ñ còn l i là ta xác ñ nh g(n ) như th nào ñ có (6) ? Vì f (n ) là ña th c b c k nên ta ph i ch n g(n ) sao cho g(n ) + ag(n − 1) + bg(n − 2) là m t ña th c b c k theo n . Khi ñó ta ch c n thay k + 1 giá tr b t kì c a n vào (6) ta s xác ñ nh ñư c g(n ) . Gi s g(n ) = am n m + am −1n m −1 + ... + a1n + a 0 (am ≠ 0 ) là ña th c b c m . Khi ñó h s c a x m và x m −1 trong VP là: am .(1 + a + b) và  −(a + 2b)m.am + (1 + a + b)am −1  .   Do ñó : i ) N u PT: x 2 + ax + b = 0 (1) có nghi m hai nghi m phân bi t khác 1 thì 1 + a + b ≠ 0 nên VP(6) là m t ña th c b c m . ii ) N u PT (1) có hai nghi m phân bi t trong ñó có m t nghi m x = 1 ⇒ 1 + a + b = 0 và −(a + 2b)m.am + (1 + a + b)am −1 = −(a + 2b ).m.am ≠ 0 nên VP(6) là m t ña th c b c m −1 . iii ) N u PT (1) có nghi m kép x = 1 ⇒ a = −2;b = 1 nên VP(6) là m t ña th c b c m − 2. V y ñ ch n g(n ) ta c n chú ý như sau: - 12 -
  13. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s N u (1) có hai nghi m phân bi t, thì g(n ) là m t ña th c cùng b c v i f (n ) N u (1) có hai nghi m phân bi t, trong ñó m t nghi m b ng 1 thì ta ch n g(n ) = n.h(n ) trong ñó h(n ) là ña th c cùng b c v i f (n ) . N u (1) có nghi m kép x = 1 thì ta ch n g (n ) = n 2 .h (n ) trong ñó h(n ) là ña th c cùng b c v i f (n ) . u ; u  D ng 6: ð tìm CTTQ c a dãy (un ) :  0 1 , un + a.un −1 + b.un − 2 = f (n ) ; ∀n ≥ 2   ( trong ñó f (n ) là ña th c theo n b c k và b 2 − 4ac ≥ 0 ) ta làm như sau: Xét g(n ) là m t ña th c b c k : g(n ) = ak n k + ... + a1k + a 0 . • N u phương trình : x 2 + ax + b = 0 (1) có hai nghi m phân bi t, ta phân tích f (n ) = g(n ) + ag(n − 1) + bg(n − 2) r i ñ t vn = un − g(n ) . • N u (1) có hai nghi m phân bi t trong ñó m t nghi m x = 1 , ta phân tích f (n ) = n.g(n ) + a(n − 1)g(n − 1) + b(n − 2)g(n − 2) r i ñ t vn = un − n.g(n ) . • N u (1) có nghi m kép x = 1 , ta phân tích f (n ) = n 2 .g(n ) + a(n − 1)2 .g(n − 1) + b(n − 2)2 .g(n − 2) r i ñ t vn = un − n 2 .g(n ) . u = 1; u1 = 4  Ví d 1.13: Xác ñ nh CTTQ c a dãy (un ) :  0 . un − 3un −1 + 2un − 2 = 2n + 1 ∀n ≥ 2  Gi i: Vì phương trình x 2 − 3x + 2 = 0 có hai nghi m x = 1; x = 2 nên ta phân tích 2n + 1 = n(kn + l ) − 3(n − 1) k (n − 1) + l  + 2(n − 2) k (n − 2) + l  , cho n = 0; n = 1 ta     5k − l = 1  ⇔ k = −1; l = −6 . có h :  3k − l = 3  ð t vn = un + n(n + 6) ⇒ v0 = 1; v1 = 11 và vn − 3vn −1 + 2vn −2 = 0 α + β = 1  ⇒ vn = α .2n + β .1n v i α , β :  ⇔ α = 10; β = −9 2α + β = 11   ⇒ vn = 10.2n − 9 ⇒ un = 5.2n +1 − n 2 − 6n − 9 ∀n = 0,1,2,... . - 13 -
  14. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s u0 = −1; u1 = 3  Ví d 1.14: Tìm CTTQ c a dãy s (un ) :  . un − 4un −1 + 3un − 2 = 5.2n ∀n ≥ 2   Gi i: Ta phân tích 2n = a.2n − 4a.2n −1 + 3a.2n − 2 . Cho n = 2 ta có: 4 = 4a − 8a + 3a ⇔ a = −4 ð t vn = un + 5.4.2n ⇒ v0 = 19; v1 = 43 và vn − 4vn −1 + 3vn − 2 = 0 Vì phương trình x 2 − 4x + 3 = 0 có hai nghi m x = 1, x = 3 nên vn = α .3n + β .1n α + β = 19  V i α, β :  ⇔ α = 12; β = 7 ⇒ vn = 12.3n + 7 . 3α + β = 43  V y un = 4.3n +1 − 5.2n + 2 + 7 ∀n = 1,2,... . Chú ý : V i ý tư ng cách gi i trên, ta tìm CTTQ c a dãy s (un ) ñư c xác ñ nh b i: u 0 ; u1  (v i a 2 − 4b ≥ 0 ) như sau:  un + a.un −1 + b.un − 2 = c.α ∀n ≥ 2 n  Ta phân tích α n = kα n + a.k .α n −1 + b.k .α n − 2 (7). Cho n = 2 thì (7) tr thành: k (α 2 + a.α + b) = α 2 α2 khi α không là nghi m c a phương trình : T ñây, ta tìm ñư c k = α + aα + b 2 x 2 + ax + b = 0 (8). v = u0 − kc; v1 = u1 − kcα  Khi ñó, ta ñ t vn = un − kc.α n , ta có dãy (vn ) :  0 vn + a.vn −1 + bvn − 2 = 0 ∀n ≥ 2  ⇒ vn = p.x1 + q.x 2 (x1, x 2 là hai nghi m c a (8)). n n ⇒ un = p.x1 + q.x 2 + kc.α n . n n V y n u x = α là m t nghi m c a (8), t c là: α 2 + aα + b = 0 thì ta s x lí th nào ? Nhìn l i cách gi i d ng 3, ta phân tích : α n = kn.α n + a.k (n − 1)α n −1 + bk (n − 2)α n − 2 (9). α a Cho n = 2 ta có: α k (2α + a ) = α 2 ⇔ k (2α + a ) = α ⇔ k = (α ≠ − ) . 2α + a 2 ⇒ (2) có nghi m k ⇔ α là nghi m ñơn c a phương trình (8). Khi ñó: ⇒ un = p.x1 + q.x 2 + kcn.α n . n n - 14 -
  15. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s a Cu i cùng ta xét trư ng h p x = α = − là nghi m kép c a (8). V i tư tư ng như trên, 2 ta s phân tích: α n = kn 2 .α n + a.k (n − 1)2 α n −1 + bk (n − 2)2 α n − 2 (10). α 1 Cho n = 2 ta có: (10) ⇔ α 2 = 4k .α 2 + ak .α ⇒ k = =. 4α + a 2 1 Khi ñó: ⇒ un = p.x1 + q.x 2 + cn 2 .α n . n n 2 V y ta có k t qu sau: u 0 ; u1  D ng 7: Cho dãy s (un ) xác ñ nh b i:  . un + a.un −1 + b.un − 2 = c.α ; ∀n ≥ 2 n  ð xác ñ nh CTTQ c a dãy (un ) ta làm như sau: Xét phương trình : x 2 + ax + b = 0 (11) • N u phương trình (11) có hai nghi m phân bi t khác α thì α2 + kc.α v i k = un = + q.x 2 n n n p.x1 . α 2 + aα + b • N u phương trình (11) có nghi m ñơn x = α thì α un = p.x 1 + q.x 2 + kcn.α n v i k = n n . 2α + a 1 • N u x = α là nghi m kép c a (11) thì : un = (p + qn + cn 2 ).α n . 2 u0 = −1; u1 = 3  Ví d 1.15: Xác ñ nh CTTQ c a dãy (un ) :  . un − 5un −1 + 6un − 2 = 5.2n ∀n ≥ 2   Gi i: Phương trình x 2 − 5x + 6 = 0 có hai nghi m x1 = 2; x 2 = 3 , do ñó un = p.2n + q.3n + 5kn.2n . - 15 -
  16. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s α  2 k = = = −2 2α + a 4 − 5  V i  p + q = −1 ⇔ k = −2; p = −26;q = 25 . 2p + 3q + 10k = 3   V y un = −26.2n + 25.3n − 10n.2n = 25.3n − 2n +1(5n + 13) ∀n = 1,2,... . u0 = 1; u1 = 3  Ví d 1.16: Tìm CTTQ c a dãy (un ) :  . un − 4un −1 + 4un − 2 = 3.2n   Gi i: 32n Phương trình x 2 − 4x + 4 = 0 có nghi m kép x = 2 nên un = (p + qn + n )2 2 p = 1  ⇔ p = 1; q = −1 . D a vào u 0 , u1 ta có h :  p +q = 0   V y un = (3n 2 − 2n + 2)2n −1 ∀n = 1,2,... . V i cách xây d ng tương t ta cũng có ñư c các k t qu sau: u , u , u  D ng 8: Cho dãy (un ) :  0 1 2 .ð xác ñ nh CTTQ un + aun −1 + bun − 2 + cun − 3 = 0 ∀n ≥ 3   c a dãy ta xét phương trình: x 3 + ax 2 + bx + c = 0 (12) . • N u (12) có ba nghi m phân bi t x1, x 2 , x 3 ⇒ un = α x1 + β x 2 + γ x 3 . D a vào n n n u0 , u1, u2 ta tìm ñư c α , β , γ . • N u (12) có m t nghi m ñơn, 1 nghi m kép: x1 = x 2 ≠ x 3 ⇒ un = (α + β n )x1 + γ .x 3 n n D a vào u 0 , u1, u2 ta tìm ñư c α , β , γ . • N u (12) có nghi m b i 3 x1 = x 2 = x 3 ⇒ un = (α + β n + γ n 2 )x1 . n D a vào u 0 , u1, u2 ta tìm ñư c α , β , γ . u = 0, u2 = 1, u3 = 3,  Ví d 1.17: Tìm CTTQ c a dãy (un ) :  1 un = 7un −1 − 11.un − 2 + 5.un − 3 , ∀n ≥ 4  - 16 -
  17. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s Gi i : Xét phương trình ñ c trưng : x 3 − 7x 2 + 11x − 5 = 0 Phương trình có 3 nghi m th c: x1 = x 2 = 1, x 3 = 5 V y an = α + β n + γ 5n Cho n = 1, n = 2, n = 3 và gi i h phương trình t o thành, ta ñư c 1 3 1 α=− ,β= ,γ= 16 4 16 13 1 + ( n − 1) + .5n −1 . V y an = − 16 4 16 u = 2; un = 2un −1 + vn −1  ∀n ≥ 1 . Ví d 1.18: Tìm CTTQ c a dãy s (un ),(vn ) :  0 v0 = 1; vn = un −1 + 2vn −1   Gi i: Ta có: un = 2un −1 + un − 2 + 2vn − 2 = 2un −1 + un − 2 + 2(un −1 − 2un − 2 ) ⇒ un = 4un −1 − 3un − 2 và u1 = 5 1 + 3n +1 −1 + 3n +1 T ñây, ta có: un = ⇒ vn = un +1 − 2un = . 2 2 Tương t ta có k t qu sau: x = pxn −1 + qyn −1 ; x1  D ng 9: Cho dãy (xn ),(yn ) :  n . ð xác ñ nh CTTQ c a hai dãy yn = ryn −1 + sx n −1; y1   (xn ),(yn ) ta làm như sau: Ta bi n ñ i ñư c: x n − (p + s )x n −1 + (ps − qr )xn − 2 = 0 t ñây ta xác ñ nh ñư c x n , thay vào h ñã cho ta có ñư c yn . Chú ý : Ta có th tìm CTTQ c a dãy s trên theo cách sau: q − λr  x n − λyn = (p − λs )(x n −1 − y) λs − p n −1  Ta ñưa vào các tham s ph λ , λ ' ⇒  q + λ 'r x + λ ' y = (p + λ ' s )(x + y) n −1 p + λ ' s n −1  n n  - 17 -
  18. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s q − λr  λ = λs − p ⇒ x n − λyn = (p − λs )(x n −1 − λyn −1 )   Ta ch n λ , λ ' sao cho   λ ' = q + λ ' r x n + λ ' yn = (p + λ ' s )(x n −1 + λ ' yn −1 )  λ 's + p   x − λy = (p − λs )n −1(x − λy ) n gi i h này ta tìm ñư c ( xn ) , ( yn ) . 1 1 n  n −1 x n + λ ' yn = (p + λ ' s ) (x1 + λ ' y1 )  u1 = 1  Ví d 1.19: Tìm CTTQ c a dãy (un ) :  2un −1 . un = ∀n ≥ 2  3un −1 + 4  +4 3 3u 1 1 1 = n −1 = +2 . ð t xn = Gi i: Ta có , ta có: 2un −1 2 un un −1 un x1 = 1 5.2n −1 − 3  2 ⇒ xn = ⇒ un =  . 3 n −1 x n = 2x n −1 + −3 2  5.2  2 u1 = 2  −9un −1 − 24 Ví d 1.20: Tìm CTTQ c a dãy s (un ) :  . un = 5u ∀n ≥ 2 + 13  n −1 Gi i: Bài toán này không còn ñơn gi i như bài toán trên vì trên t s còn h s t do, do ñó ta tìm cách làm m t h s t do trên t s . Mu n v y ta ñưa vào dãy ph b ng cách ñ t un = xn + t . Thay vào công th c truy h i, ta có: −9x n −1 − 9t − 24 (−9 − 5t )xn −1 − 5t 2 − 22t − 24 xn + t = ⇒ xn = 5x n −1 + 5t + 13 5x n −1 + 5t + 13 Ta ch n t : 5t 2 + 22t + 24 = 0 ⇒ t = −2 ⇒ x1 = 4 11.3n −1 − 10 x n −1 1 3 1 4 ⇒ xn = =5+ = ⇒ xn = ⇒ ⇒ +3 11.3n −1 − 10 5xn −1 4 xn x n −1 xn −22.3n −1 + 24 ⇒ un = x n − 2 = . n −1 − 10 11.3 - 18 -
  19. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s pun −1 + q D ng 10: Cho dãy ( un ): u1 = α ; un = ∀n ≥ 2 . ð tìm CTTQ c a dãy (xn) run −1 + s ta làm như sau: ð t un = x n + t , thay vào công th c truy h i c a dãy ta có: px n −1 + pt + q (p − rt )x n −1 − rt 2 + (p − s )t + q xn = −t = (13). run −1 + rt + s rx n −1 + rt + s 1 1 Ta ch n t : rt 2 + (s − p)t − q = 0 . Khi ñó ta chuy n (13) v d ng: =a +b xn x n −1 1 , suy ra un . T ñây ta tìm ñư c xn u = 2  Ví d 1.21: Xác ñ nh CTTQ c a hai dãy s (un ),(vn ) :  1 và v1 = 1  u = u 2 + 2v 2 n n −1 n −1 ∀n ≥ 2 .  vn = 2un −1vn −1  Gi i:   un = un −1 + 2vn −1 un + 2vn = (un −1 + 2vn −1 ) 2 2 2 ⇒ Ta có:  2vn = 2 2un −1vn −1 un − 2vn = (un −1 − 2vn −1 ) 2     2n − 1 n −1 un + 2vn = (u1 + 2v1 ) = (2 + 2)2 ⇒ n −1 n −1 un − 2vn = (u1 − 2v1 )2 = (2 − 2)2   1 n −1  n −1 un = (2 + 2)2 + (2 − 2)2    2 . ⇒ 1 n −1  n −1 vn = (2 + 2) − (2 − 2)2  2 2 2    - 19 -
  20. M t s phương pháp xác ñ nh công th c t ng quát c a dãy s 2  un −1   +2  v  u = u 2 + 2v 2 u 2 + 2vn −1 2 n u  n −1  n − 1 ⇒ n = n −1 n −1 = Nh n xét: T  vn = 2un −1vn −1 u  2un −1vn −1 vn  2  n −1  v   n −1  x1 = 2  un Do v y n u ta ñ t x n = x n −1 + 2 . Ta có bài toán sau: 2 ta ñư c dãy s (xn ) :  x n = vn 2x n −1  x1 = 2  x n −1 + 2 2 Ví d 1.22: Xác ñ nh CTTQ c a dãy s (xn ) :  . xn = ∀n ≥ 2  2x n −1  Gi i: u1 = 2 un = un −1 + 2vn −1  2 2  ∀n ≥ 2 . và  Xét hai dãy (un ),(vn ) :  v1 = 1 vn = 2un −1vn −1     u Ta ch ng minh x n = n (14). vn u2 • n = 2 ⇒ x2 = = 2 ⇒ n = 2 (14) ñúng. v2 x n −1 + 2 un −1 + 2vn −1 2 2 2 un −1 un • Gi s x n −1 = ⇒ xn = = = ⇒ (14) ñư c ch ng 2x n −1 2un −1vn −1 vn −1 vn minh n −1 n −1 (2 + 2)2 + (2 − 2)2 Theo k t qu bài toán trên, ta có: x n = 2 . 2n − 1 2n − 1 (2 + 2) − (2 − 2) D ng 11: 1) T hai ví d trên ta có ñư c cách tìm CTTQ c a hai dãy s (un ),(vn ) ñư c xác ñ nh u = u 2 + a.v 2 ; u = α  n −1 n −1 1 b i:  n (trong ñó a là s th c dương) như sau: ; v1 = β vn = 2vn −1un −1   - 20 -
nguon tai.lieu . vn