Xem mẫu

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI NGUYỄN XUÂN LAM ỨNG DỤNG LÝ THUYẾT ĐỒNG NHẤT HÓA ĐỂ PHÂN TÍCH TRẠNG THÁI PHÂN BỐ NHIỆT ĐỘ VÀ ỨNG SUẤT DO NHIỆT THỦY HÓA XI MĂNG TRONG BÊ TÔNG CỐT THÉP CÔNG TRÌNH CẦU LUẬN ÁN TIẾN SĨ KỸ THUẬT HÀ NỘI - 2022
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI NGUYỄN XUÂN LAM ỨNG DỤNG LÝ THUYẾT ĐỒNG NHẤT HÓA ĐỂ PHÂN TÍCH TRẠNG THÁI PHÂN BỐ NHIỆT ĐỘ VÀ ỨNG SUẤT DO NHIỆT THỦY HÓA XI MĂNG TRONG BÊ TÔNG CỐT THÉP CÔNG TRÌNH CẦU Ngành: Kỹ thuật xây dựng công trình giao thông Mã số: 9.58.02.05 Chuyên ngành: Xây dựng cầu hầm LUẬN ÁN TIẾN SĨ KỸ THUẬT NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS.TS. Nguyễn Ngọc Long 2. PGS.TS. Nguyễn Duy Tiến HÀ NỘI - 2022
  3. i LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu do tôi thực hiện. Các số liệu và kết quả trình bày trong luận án là trung thực, chưa được công bố bởi bất kỳ tác giả nào hay ở bất kỳ công trình nào khác. Tác giả luận án Nguyễn Xuân Lam
  4. ii LỜI CẢM ƠN Bản Luận án Tiến sỹ được thực hiện tại Trường Đại học Giao thông Vận tải dưới sự hướng dẫn khoa học của Thầy PGS.TS Nguyễn Ngọc Long và Thầy PGS.TS Nguyễn Duy Tiến. Nghiên cứu sinh xin bày tỏ lòng biết ơn sâu sắc tới các Thầy về định hướng khoa học, liên tục quan tâm sâu sát, tạo điều kiện thuận lợi trong suốt quá trình nghiên cứu, có những lúc Nghiên cứu sinh cảm tưởng khó có thể tiếp tục nghiên cứu nhưng nhờ sự động viên, khích lệ của các Thầy cộng với sự nỗ lực không ngừng nghỉ của bản thân, đến nay luận án đã được hoàn thành. Nghiên cứu sinh cũng xin được chân thành cảm ơn các Nhà khoa học trong và ngoài nước, Tác giả của các công trình nghiên cứu đã được nghiên cứu sinh sử dụng trích dẫn trong luận án về nguồn tư liệu quý báu, những kết quả liên quan trong quá trình nghiên cứu hoàn thành luận án. Nghiên cứu sinh trân trọng cảm ơn Ban Giám Hiệu, Phòng Đào tạo Sau Đại học, Bộ môn Cầu Hầm, Hội đồng Tiến sỹ Trường Đại học Giao thông Vận tải đã tạo điều kiện để nghiên cứu sinh thực hiện và hoàn thành chương trình nghiên cứu của mình. Cuối cùng là sự biết ơn đến Gia đình đã liên tục động viên để duy trì nghị lực, sự hy sinh thầm lặng, sự cảm thông, chia sẻ về thời gian, sức khỏe và các khía cạnh khác của cuộc sống trong cả quá trình thực hiện luận án. Hà Nội, ngày tháng năm 2022 Nghiên cứu sinh Nguyễn Xuân Lam
  5. iii MỤC LỤC LỜI CAM ĐOAN ................................................................................................... i LỜI CẢM ƠN… .................................................................................................... ii MỤC LỤC…….. ................................................................................................... iii DANH MỤC HÌNH VẼ ........................................................................................ vi DANH MỤC CÁC BẢNG BIỂU ......................................................................... xi DANH MỤC CÁC KÍ HIỆU VIẾT TẮT.............................................................xiv MỞ ĐẦU……… .................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN .................................................................................. 6 1.1. Tổng quan về sự hình thành vết nứt trong kết cấu BTCT không chịu ảnh hưởng trực tiếp từ tác động cơ học ................................................................... 6 1.1.1. Phân tích các dạng vết nứt không do tác động của cơ học ...................... 6 1.1.2 Khái niệm về nhiệt thủy hóa xi măng trong bê tông .............................. 19 1.1.3 Các quy định về kiểm soát vết nứt phi kết cấu cho các công trình cầu ở Việt Nam ....................................................................................................... 31 1.2. Các phương pháp phân tích sự hình thành nhiệt thủy hóa của xi măng trong kết cấu bê tông cốt thép ở tuổi sớm trên thế giới và tại Việt Nam ...... 32 1.2.1. Các phương pháp trên thế giới ............................................................. 32 1.2.2. Các phương pháp ở Việt Nam .............................................................. 35 1.3. Một số giải pháp phòng chống, hạn chế nứt không do lực tác động trong kết cấu bê tông, bê tông cốt thép của mố trụ cầu ở giai đoạn thi công .......... 36 1.3.1. Phương pháp hạ nhiệt cốt liệu .............................................................. 36 1.3.2. Sử dụng xi măng ít tỏa nhiệt................................................................. 36 1.3.3. Bảo dưỡng bê tông ............................................................................... 36 1.3.4. Khống chế nhiệt độ bê tông trong quá trình thi công. ........................... 37 1.3.5. Sử dụng phụ gia khoáng ....................................................................... 37 1.4. Kết luận chương 1 ................................................................................ 39
  6. iv CHƯƠNG 2. XÁC ĐỊNH HỆ SỐ DẪN NHIỆT TƯƠNG ĐƯƠNG VÀ CÁC ĐẶC TRƯNG VẬT LIỆU TƯƠNG ĐƯƠNG CỦA LỚP BÊ TÔNG CỐT THÉP BẰNG PHƯƠNG PHÁP ĐỒNG NHẤT HÓA ....................................... 40 2.1. Tổng quan về phương pháp đồng nhất hóa vật liệu ................................ 40 2.1.1. Ứng xử vật liệu ................................................................................... 40 2.2.2. Khái niệm đa cấp độ............................................................................. 41 2.2.3. Khái niệm đồng nhất hóa ..................................................................... 41 2.2.4. Đồng nhất hóa vật liệu theo bài toán nhiệt ............................................ 44 2.2.5. Đồng nhất hóa vật liệu theo với điều kiện biên theo biến dạng để xác định các đặc trưng vật liệu tương đương của kết cấu BTCT ........................... 47 2.2. Tính toán hệ số dẫn nhiệt tương đương của vật liệu BTCT bằng phương pháp đồng nhất hóa ......................................................................................... 53 2.2.1. Phương trình vi phân của quá trình truyền nhiệt ................................... 54 2.2.2. Các thông số tính toán nguồn nhiệt .................................................... 54 2.2.3. Công thức quá trình truyền nhiệt trong phương pháp phần tử hữu hạn..56 2.3.Phương pháp đồng nhất hóa vật liệu để xác định hệ số dẫn nhiệt tương đương, chiều dày của lớp BTCT sau khi đồng nhất hóa và nhiệt dung riêng của lớp BTCT .................................................................................................. 57 2.3.1.Xác định hệ số dẫn nhiệt tương đương .................................................. 57 2.3.2. Xác định chiều dày của lớp BTCT ..................................................... 60 2.3.3. Xác định nhiệt dung riêng của lớp BTCT ........................................... 60 2.4. Xây dựng chương trình tính toán hệ số dẫn nhiệt tương đương và các đặc trưng vật liệu tương đương của lớp BTCT .............................................. 60 2.4.1 Sơ đồ khối của chương trình tính toán hệ số dẫn nhiệt tương đương...... 60 2.4.2 Xác định các đặc trưng vật liệu tương đương của kết cấu BTCT thay đổi theo thời gian bằng phương pháp đồng nhất hóa ............................................ 69 2.5. Khảo sát ảnh hưởng của cấp bê tông và biện pháp thi công đến khả năng gây nứt của trụ cầu BTCT .............................................................................. 73 2.5.1. Mô hình bài toán ................................................................................ 74
  7. v 2.5.2. Bê tông thông thường ......................................................................... 75 2.5.3. Bê tông toả nhiệt thấp, chiều cao khối đổ lớn ..................................... 78 2.5.4. Bê tông toả nhiệt thấp, chiều cao khối đổ nhỏ .................................... 82 2.6. Kết luận chương 2: .................................................................................... 88 CHƯƠNG 3. NGHIÊN CỨU THÍ NGHIỆM XÁC ĐỊNH NHIỆT ĐỘ ĐOẠN NHIỆT TỪ QUÁ TRÌNH THỦY HÓA CỦA XI MĂNG CHO BÊ TÔNG THÔNG THƯỜNG DÙNG CHO CÔNG TRÌNH CẦU ................................... 90 3.1. Mục đích thí nghiệm ................................................................................. 90 3.2. Thực nghiệm xác định nhiệt phát sinh trong đơn vị thể tích của bê tông tuổi sớm sử dụng cho mố và trụ cầu ............................................................... 90 3.2.1. Lựa chọn cấp phối thí nghiệm ............................................................ 90 3.2.2. Quy trình thực hiện thí nghiệm đo nhiệt lượng đoạn nhiệt cho bê tông................................................................................................................ 91 3.2.3. Đánh giá đặc trưng nhiệt của các mẫu bê tông...................................... 98 3.3. Kết luận chương 3: ................................................................................. 104 CHƯƠNG 4. ỨNG DỤNG LÝ THUYẾT ĐỒNG NHẤT HÓA ĐỂ PHÂN TÍCH TRẠNG THÁI PHÂN BỐ NHIỆT THỦY HÓA XI MĂNG TRONG KẾT CẤU TRỤ CẦU BTCT Ở TUỔI SỚM .................................................... 105 4.1 Thiết lập quá trình đo nhiệt thủy hóa của xi măng của thân trụ BTCT ngoài hiện trường .......................................................................................... 106 4.2. Mô phỏng sự thay đổi nhiệt độ theo thời gian và sự phân bố nhiệt độ do nhiệt thủy hóa của thân trụ cầu BTCT thực tế ............................................ 108 4.3. Mô phỏng sự thay đổi ứng suất do nhiệt thủy hóa của thân trụ cầu BTCT thực tế ................................................................................................. 108 4.4. Kết luận chương 4: ................................................................................. 126 KẾT LUẬN VÀ KIẾN NGHỊ ........................................................................... 128 DANH MỤC CÔNG TRÌNH CÔNG BỐ CỦA TÁC GIẢ .............................. 131 TÀI LIỆU THAM KHẢO ................................................................................. 132 PHỤ LỤC……… ............................................................................................... 136
  8. vi DANH MỤC HÌNH VẼ Hình 1. Phân bố ứng suất trong bê tông khối lớn do chênh lệch nhiệt độ ................ 1 Hình 2. Ví dụ về các kết cấu bê tông thường xuất hiện vết nứt phi kết cấu: a) tấm móng bè, b) đập bê tông, c) Bể chứa, d) tháp tỏa nhiệt của lò phản ứng, e) móng tuabin gió, f) cọc, g) các đoạn đúc sẵn (đường hầm, bản mặt cầu), h) các khối bê tông chắn sóng, i) trụ cầu và (j) tường chắn. ............................................................ 2 Hình 1. 1. a) Hình ảnh đập tràn đang được xây dựng, b, c) các vết nứt do nhiệt gây ra và d, e) kết quả từ các mô phỏng số [9]................................................................ 7 Hình 1. 2. a) Khối đúc đập điển hình [13], b) sơ đồ vết nứt của khối đúc, c) kết quả phân bố nhiệt độ từ FEM và d) chỉ số nứt (ứng suất kéo / độ bền kéo) ..................... 8 Hình 1. 3. a) Bố trí cốt thép mặt cắt ngang trụ, b) chi tiết diện tích bề mặt được gia cố, c) khối bị nứt sau 1 năm với các vết nứt dọc, d) hình ảnh chi tiết của một lõi khoan qua vết nứt dọc rộng 0,4 mm ....................................................................... 10 Hình 1. 4. Mô phỏng khối móng trụ: a) diễn biến nhiệt độ trong lõi và b) trạng thái nứt ở 720 ngày sau khi đúc. ................................................................................... 11 Hình 1. 5. a) Hình ảnh bệ trụ IOB. Một số vết nứt đã sửa chữa, b) Chỉ số nứt FEA của móng IOB ở 116 giờ sau khi đúc, c) Chỉ số nứt FEA của bệ trụ SBB ở 86 giờ sau khi đúc và d) Chỉ số nứt FEA của bệ trụ WBB ở 156 giờ sau khi đúc [16]. ..... 13 Hình 1. 6. Các vết nứt điển hình trên trụ: a) ngang, b) dọc và c) hướng ngẫu nhiên [17]........................................................................................................................ 15 Hình 1. 7. Nứt do Sa lắng ...................................................................................... 16 Hình 1. 8. Nứt do co dẻo........................................................................................ 17 Hình 1. 9. Nứt nhiệt thủy hóa xi măng tại trụ cầu Vĩnh Tuy................................... 17 Hình 1. 10. Nứt do co khô ..................................................................................... 18 Hình 1. 11. Nứt do rỉ cốt thép ................................................................................ 18 Hình 1. 12. Quá trình thủy hóa xi măng và sự phát triển cấu trúc hồ xi măng. ....... 25 Hình 1. 13. Ứng xử nhiệt của bê tông. ................................................................... 27
  9. vii Hình 1. 14. Ứng suất nhiệt và cường độ chịu kéo của bê tông theo thời gian. ........ 27 Hình 1. 15. Tốc độ tỏa nhiệt trong quá trình thủy hóa của xi măng poóclăng. ........ 28 Hình 2. 1. Quá trình đồng nhất hóa vật liệu: (a) Cấp độ kết cấu; (b) phần tử thể tích đặc trưng REV; (c) Môi trường đồng nhất tương đương. ....................................... 42 Hình 2. 2. Phần tử thể tích đặc trưng REV chứa hai vật liệu thành phần ................ 45 Hình 2. 3. Phần tử thể tích đặc trưng REV của vật liệu BTCT ( hình tròn là cốt thép, phần còn lại là bê tông): (a) phần tử thể tích đặc trưng REV; (b) chia lưới tam giác cho REV ................................................................................................................ 48 Hình 2. 4. Các giá trị thành phần chuyển vị tại nút của phần tử: (a)  = 11e1  e1 , 1 (b)  = 22e2  e2 , (c)  = 12 (e1  e2 + e2  e1 ) ...................................................... 52 2 Hình 2. 5. Quá trình đồng nhất hóa vật liệu: (a) kết cấu không đồng nhất; (b) kết cấu đồng nhất; (c) REV................................................................................................ 58 Hình 2. 6. Chia lưới tam giác trong khối vật thể đặc trưng REV của vật liệu BTCT .............................................................................................................................. 59 Hình 2. 7. Giá trị nhiệt độ tại các nút phần tử tam giác .......................................... 59 Hình 2. 8. Sơ đồ qui trình phân tích trường nhiệt độ và ứng suất trong bê tông khối lớn ......................................................................................................................... 61 Hình 2. 9. Giao diện chương trình Tcon1............................................................... 62 Hình 2. 10. Mô hình vật liệu bê tông cốt thép ........................................................ 63 Hình 2. 11. Hệ số dẫn nhiệt tương đương theo thời gian. ....................................... 63 Hình 2. 12. Kích thước khối BTCT được đồng nhất hóa (a) và chia lưới của khối (b) .............................................................................................................................. 64 Hình 2. 13. Trường nhiệt độ trong khối bê tông ..................................................... 64 Hình 2. 14. Trường nhiệt độ trong khối bê tông có đường kính cốt thép 18mm, bề dày lớp bê tông bảo vệ 50mm ................................................................................ 65
  10. viii Hình 2. 15. Trường nhiệt độ trong khối bê tông có đường kính cốt thép 20mm, bề dày lớp bê tông bảo vệ 50mm ................................................................................ 65 Hình 2. 16. Trường nhiệt độ trong khối bê tông có đường kính cốt thép 25mm, bề dày lớp bê tông bảo vệ 50mm ................................................................................ 66 Hình 2. 17. Trường nhiệt độ trong khối bê tông có đường kính cốt thép 32mm, bề dày lớp bê tông bảo vệ 50mm ................................................................................ 66 Hình 2. 18. Quan hệ giữa hệ số dẫn nhiệt tương đương và đường kính cốt thép, bề dày lớp bê tông bảo vệ ........................................................................................... 68 Hình 2. 19. Hệ số truyền nhiệt tương đương theo thời gian với trường hợp đường kính cố thép chủ D32mm và cốt thép đai D25mm. ................................................ 68 Hình 2. 20. Mô đun đàn hồi Ex của vật liệu BTCT thay đổi theo thời gian ............. 72 Hình 2. 21. Mô đun đàn hồi Ey của vật liệu BTCT thay đổi theo thời gian ............ 73 Hình 2. 22. Mô hình trụ đặc BTCT ........................................................................ 75 Hình 2. 23. Biến thiên ứng suất trong thân trụ ....................................................... 75 Hình 2. 24. Quan hệ ứng suất và chiều dày thân trụ với bê tông M250 .................. 76 Hình 2. 25. Quan hệ ứng suất và chiều dày thân trụ với bê tông M200 .................. 77 Hình 2. 26. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 2m............ 78 Hình 2. 27. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,8m......... 79 Hình 2. 28. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,6m......... 79 Hình 2. 29. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,4m......... 79 Hình 2. 30. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,2m......... 80 Hình 2. 31. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,0m......... 80 Hình 2. 32. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 2m........... 83 Hình 2. 33. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,8m......... 83 Hình 2. 34. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,6m......... 83 Hình 2. 35. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,4m......... 84
  11. ix Hình 2. 36. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,2m......... 84 Hình 2. 37. Quan hệ ứng suất và lượng xi măng với chiều dày thân trụ 1,0m......... 84 Hình 2. 38. Quan hệ ứng suất và chiều dày thân trụ với bê tông M400 .................. 86 Hình 2. 39. Quan hệ ứng suất và chiều dày thân trụ với bê tông M350 .................. 86 Hình 2. 40. Quan hệ ứng suất và chiều dày thân trụ với bê tông M300 .................. 86 Hình 2. 41. Quan hệ ứng suất và chiều dày thân trụ với bê tông M250 .................. 87 Hình 2. 42. Quan hệ ứng suất và chiều dày thân trụ với bê tông M200 .................. 87 Hình 3. 1. Sơ đồ bố trí thí nghiệm đo nhiệt lượng đoạn nhiệt......................... .......94 Hình 3. 2. Trộn vật liệu hỗn hợp BT. ..................................................................... 95 Hình 3. 3. Đặt mẫu bê tông vào khay, kết nối cảm biến nhiệt................................. 95 Hình 3. 4. Đặt khay mẫu vào thùng đoạn nhiệt, nối cảm biến với máy đo. ............. 96 Hình 3. 5. Máy tính theo dõi và lưu dữ liệu đo nhiệt. ............................................. 97 Hình 3. 6. Nhiệt độ đoạn nhiệt thực nghiệm của 2 hỗn hợp bê tông. ...................... 99 Hình 3. 7. Đường cong mức độ thủy hóa thực nghiệm và hồi quy. ....................... 102 Hình 3. 8. Nhiệt lượng sinh ra do nhiệt thủy hóa xi măng theo thời gian .............. 103 Hình 4. 1. Sơ đồ chương trình tính toán sự phân bố nhiệt độ do nhiệt thủy hóa…106 Hình 4. 2. Thân trụ dùng để thực nghiệm: (a) kích thước thân trụ; (b) Bố trí cốt thép mặt cắt ngang, (c) Bố trí các đầu đo nhiệt độ trên mặt cắt ngang. ........................ 107 Hình 4. 3. Nhiệt độ đo được tại các đầu đo bằng Thermometer ngoài hiện trường. ............................................................................................................................ 108 Hình 4. 4. Chia lưới hai lớp vật liệu theo mô hình phần tử hữu hạn ..................... 109 Hình 4. 5. Phân bố nhiệt của mặt cắt ngang thân trụ tại thời điểm 120 giờ ........... 110 Hình 4. 6. So sánh nhiệt độ thay đổi theo thời gian tại các vị trí điểm đo: (a). Mô phỏng nhiệt độ thay đổi theo giờ. (b). So sánh nhiệt độ trên cạnh dài. (c). So sánh nhiệt độ trên cạnh ngắn. ....................................................................................... 111 Hình 4. 7. Nhiệt độ tại các vị trí đầu đo phụ thuộc khoảng cách tới tâm trụ theo cạnh dài thân trụ: (a). Mô phỏng, (b)Thực đo. .............................................................. 111
  12. x Hình 4. 8. Nhiệt độ tại các vị trí đầu đo phụ thuộc khoảng cách tới tâm trụ theo cạnh ngắn thân trụ: (a). Mô phỏng. (b)Thực đo. ........................................................... 112 Hình 4. 9. So sánh nhiệt độ thay đổi theo thời gian tại các vị trí đầu đo phụ thuộc khoảng cách tới tâm trụ theo cạnh dài thân trụ của mô phỏng và thực đo ............. 112 Hình 4. 10. So sánh nhiệt độ thay đổi theo thời gian tại các vị trí đầu đo phụ thuộc khoảng cách tới tâm trụ theo cạnh ngắn thân trụ của mô phỏng và thực đo .......... 113 Hình 4. 11. So sánh nhiệt độ thay đổi theo thời gian tại các vị trí đầu đo theo mô phỏng của vật liệu BTCT và vật liệu thuần bê tông.............................................. 114 Hình 4. 12. Hình dạng trụ cầu trên mô hình ......................................................... 116 Hình 4. 13. Khai báo ảnh hưởng của từ biến và co ngót : (a) Hiển thị trên phần mềm ; (b) Việt hóa tương ứng.............................................................................. 117 Hình 4. 14. Hàm ảnh hưởng do từ biến của vật liệu theo thời gian: (a) Hiển thị trên phần mềm ; (b) Việt hóa tương ứng ..................................................................... 118 Hình 4. 15. Hàm ảnh hưởng do co ngót của vật liệu theo thời gian: (a) Hiển thị trên phần mềm ; (b) Việt hóa tương ứng ..................................................................... 119 Hình 4. 16. Chia lưới trong mô hình phần tử hữu hạn của kết cấu ........................ 120 Hình 4. 17. Điều kiện biên với mặt cắt thân trụ cầu bị ngăn cản chuyển vị theo phương pháp tuyến với mặt cắt ............................................................................ 120 Hình 4. 18. Hàm nhiệt độ môi trường xung quanh: (a) Hiển thị trên phần mềm ; (b) Việt hóa tương ứng .............................................................................................. 121 Hình 4. 19. Hàm đối lưu bề mặt thân trụ: (a) Hiển thị trên phần mềm ; (b) Việt hóa tương ứng ............................................................................................................ 122 Hình 4. 20. Ứng suất lớn nhất do nhiệt thủy hóa xi măng tại bề mặt bê tông lớn nhất ở thời điểm 60 giờ ............................................................................................... 124 Hình 4. 21. Ứng suất do nhiệt thủy hóa xi măng tại thời điểm 1000 giờ ............... 125 Hình 4. 22. Thay đổi ứng suất nhiệt trên bề mặt khối bê tông và cường độ chịu kéo của bê tông .......................................................................................................... 125
  13. xi DANH MỤC CÁC BẢNG BIỂU Bảng 1.1. Thông tin liên quan đến nứt móng cầu [16] ........................................... 11 Bảng 1. 2. Kết quả nhiệt từ các mô phỏng trong [16] ............................................ 12 Bảng 1. 3. Thông tin liên quan đến các trụ cầu bị nứt trong [15] ............................ 14 Bảng 1. 4. Các kiểu nứt trong giai đoạn bê tông ninh kết ....................................... 16 Bảng 1. 5. Các kiểu nứt trong giai đoạn bê tông non tuổi : ..................................... 17 Bảng 1. 6. Các kiểu nứt trong giai đoạn bê tông đạt cường độ ............................... 18 Bảng 1. 7. Quá trình thủy hóa điển hình của xi măng ............................................. 29 Bảng 2. 1. Hệ số dẫn nhiệt tương đương (W/mK) của BTCT cho một số loại đường kính cốt thép điển hình. ......................................................................................... 67 Bảng 2. 2. Chiều dày của lớp BTCT (mm) sau đồng nhất cho một số loại đường kính cốt thép điển hình. ......................................................................................... 67 Bảng 2. 3. Mô đun đàn hồi Ex đồng nhất (MPa) cho một số đường kính cốt thép điển hình. .............................................................................................................. 70 Bảng 2. 4. Mô đun đàn hồi Ey đồng nhất (MPa) cho một số đường kính cốt thép điển hình. .............................................................................................................. 70 Bảng 2. 5. Hệ số Poisson  yx đồng nhất cho một số đường kính cốt thép điển hình. .............................................................................................................................. 71 Bảng 2. 6. Nhiệt dung riêng (J/kg.K) của kết cấu BTCT cho một số đường kính cốt thép điển hình. ....................................................................................................... 71 Bảng 2. 7. Tổng hợp ứng suất trong thân trụ tương ứng với Mác và bề dày a......... 76 Bảng 2. 8. Tương quan giữa a và M ....................................................................... 77 Bảng 2. 9. Tổng hợp ứng suất trong thân trụ tương ứng mác bê tông và chiều dày thân trụ .................................................................................................................. 78 Bảng 2. 10. Tương quan giữa a, M, lượng xi măng để thân trụ không nứt .............. 81 Bảng 2. 11. Tương quan giữa a và M để thân trụ không nứt ................................... 82
  14. xii Bảng 2. 12. Tổng hợp ứng suất trong thân trụ tương ứng mác bê tông và chiều dày thân trụ .................................................................................................................. 82 Bảng 2. 13. Tương quan giữa a, M, lượng xi măng để thân trụ không nứt .............. 85 Bảng 2. 14. Tương quan giữa a và M để thân trụ không nứt ................................... 88 Bảng 3. 1. Thành phần cấp phối cho 1m3 bê tông. ................................................. 91 Bảng 3. 2. Thành phần hóa học của xi măng (%). .................................................. 91 Bảng 3. 3. Thành phần khoáng vật của xi măng (%). ............................................. 91 Bảng 3. 4. So sánh các phương pháp đo nhiệt lượng .............................................. 92 Bảng 3. 5. Kết quả đo nhiệt độ đoạn nhiệt của mẫu bê tông ................................... 97 Bảng 4. 1. Các thông tin cơ bản về vật liệu trong kết cấu ..................................... 116 Bảng 4. 2. Điều kiện biên tỏa nhiệt ...................................................................... 123
  15. xiii DANH MỤC CÁC KÍ HIỆU VIẾT TẮT STT Tên viết tắt Nguyên nghĩa 1 TCVN Tiêu chuẩn Việt Nam American Association of State Highway and Transportation 2 AASHTO Officials (Hiệp hội Giao thông và Vận tải đường bộ Hoa Kỳ) American Concrete Institute (Viện nghiên cứu bê tông Hoa 3 ACI Kỳ) American Society for Testing and Materials (Hiệp hội Vật 4 ASTM liệu và Thử nghiệm Hoa Kỳ) American Society of Civil Engineering (Hiệp hội kỹ sư dân 5 ASCE dụng Hoa kỳ) Fédération Internationale du Béton (Liên đoàn quốc tế về kết 6 FIB cấu bê tông) Comité Euro-International du Béton (Ủy ban bê tông Châu 7 CEB Âu) Fédération Internationale de la Précontrainte (Liên đoàn bê 8 FIP tông dự ứng lực quốc tế) 9 BTCT Bê tông cốt thép 10 BT Bê tông Load and Resistance Factor Design (Thiết kế theo hệ số tải 11 LRFD trọng và hệ số sức kháng) 12 PTHH Phần tử hữu hạn Representative Elementary Volume (Phần tử thể tích đặc 13 REV trưng) 14 FEM Finite Element Method (Phương pháp phần tử hữu hạn) 15 FEA Finite Element Analysis (Phân tích phần tử hữu hạn)
  16. 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Bê tông là một vật liệu xây dựng được sử dụng rộng rãi trên khắp thế giới bởi nó có nhiều tính năng đáp ứng được yêu cầu của nhiều loại kết cấu khác nhau, khả năng tạo hình cao, tính chất kết cấu tốt và độ bền cao so với các loại vật liệu xây dựng khác. Điều này, cùng với việc các thành phần cốt liệu rẻ và dễ tiếp cận, đã làm cho nó trở thành vật liệu xây dựng được sử dụng nhiều nhất cho các kết cấu hiện nay. Nhưng quá trình xây dựng, trong kết cấu bê tông cốt thép xuất hiện sự hình thành nhiệt độ ở tuổi sớm do ảnh hưởng của nhiệt thủy hóa. Đây là một trong những vấn đề quan trọng cần nghiên cứu do phân bố nhiệt độ này có ảnh hưởng trực tiếp đến trạng thái ứng suất-biến dạng của kết cấu BTCT ở giai đoạn thi công. Cụ thể, ứng suất kéo do sự kết hợp của chênh lệch nhiệt độ, nhiệt của quá trình thủy hóa và điều kiện môi trường xung quanh, các biến dạng tự nhiên và điều kiện biên, thường gây ra tác động nội tại đáng kể lên các kết cấu bê tông. Bất cứ khi nào ứng suất như vậy đạt đến cường độ chịu kéo của bê tông, hiện tượng nứt sẽ xảy ra, do đó có thể làm giảm khả năng sử dụng và độ bền của kết cấu. Sự phân bố ứng suất trong bê tông khối lớn do chênh lệch nhiệt độ giữa tâm và bề mặt khối bê tông được thể hiện như Hình 1. Việc xử lý, sửa chữa, khắc phục các vết nứt này đều gây tốn kém về kinh phí và gây khó khăn, phức tạp trong xây dựng, cũng như công tác bảo trì, khai thác công trình. Hình 1. Phân bố ứng suất trong bê tông khối lớn do chênh lệch nhiệt độ
  17. 2 Nứt do nhiệt trong các kết cấu bê tông non tuổi thường xuyên xảy ra, chẳng hạn như khối bê tông có kích thước lớn như móng, đập và các bộ phận công trình cầu như trình bày trong Hình 2. Khả năng nứt của các kết cấu dạng này do nhiệt độ trong các kết cấu liên quan chặt chẽ tới hàm lượng chất kết dính, nhiệt độ môi trường khi thi công và nhiệt độ bê tông tươi, đặc điểm hình học của các kết cấu. Hình 2. Ví dụ về các kết cấu bê tông thường xuất hiện vết nứt phi kết cấu: a) tấm móng bè, b) đập bê tông, c) Bể chứa, d) tháp tỏa nhiệt của lò phản ứng, e) móng tuabin gió, f) cọc, g) các đoạn đúc sẵn (đường hầm, bản mặt cầu), h) các khối bê tông chắn sóng, i) trụ cầu và (j) tường chắn. Sự hình thành nguồn nhiệt độ trong cấu kiện bê tông phụ thuộc vào nhiều yếu tố, trong đó những yếu tố quan trọng là cấp phối bê tông và công nghệ xây dựng. Nhiều nghiên cứu trước đây đã phân tích ảnh hưởng của các yếu tố công nghệ như: tốc độ thi công, kích thước khối đổ, hàm lượng xi măng, nhiệt lượng tỏa ra của 1 kg xi măng, nhiệt độ ban đầu của hỗn hợp bê tông, thời điểm xây dựng đến phân bố nhiệt trong khối bê tông cốt thép [14, 44]. Ở Việt Nam, theo tiêu chuẩn TCVN 9341:2012 “Bê tông khối lớn – Thi công và nghiệm thu” [1], để ngăn ngừa sự hình thành vết nứt trong kết cấu bê tông, chúng ta phải bảo đảm hai yếu tố: Độ chênh lệch nhiệt độ ∆T giữa các điểm hoặc các vùng trong khối bê tông không vượt quá 20oC: ∆T < 20oC; Mô đun độ chênh lệch nhiệt độ MT giữa các điểm trong khối BT đạt không quá 50oC/m; MT< 50oC/m.
  18. 3 Mô đun độ chênh lệch nhiệt độ- mức chênh lệch nhiệt độ giữa hai điểm trong khối bê tông cách nhau 1m. Đơn vị tính là oC/m. Hiện tại, công trình cầu thường sử dụng các bê tông có cường độ cao (từ cấp 25MPa đến 40MPa) nên cần xem xét lại do một số yếu tố như sau: Bê tông cường độ cao thường sử dụng hàm lượng xi măng lớn (có thể hơn 400kg/m3) dẫn đến nhiệt lượng do thủy hóa của xi măng lớn hơn nhiều so với bê tông đầm lăn và bê tông thủy công. Đặc biệt kết cấu bê tông trụ cầu sử dụng cốt thép tại biên gần mặt bê tông, do đó chúng làm thay đổi hệ số dẫn nhiệt và khả năng chịu kéo trên bề mặt của bê tông. Nghiên cứu về nguồn nhiệt độ, trường ứng suất của cấu kiện bê tông (trạng thái phân bố nhiệt độ và biến dạng) được nhiều nhà khoa học quan tâm: Một nghiên cứu về ảnh hưởng của kích thước kết cấu bê tông khối lớn đến sự hình thành trường nhiệt độ và vết nứt do thủy hóa xi măng của [3] đã xem xét ảnh hưởng của kích thước khối bê tông đến trường nhiệt độ ở tuổi sớm ngày, các kích thước của khối là 2x2x2m, 3x3x3m, 4x4x4m và 5x5x5m nhưng là khối bê tông đồng nhất không có lớp cốt thép bên trong kết cấu. Một nghiên cứu khác về mức độ thủy hóa và sự phát triển cường độ trong bê tông cường độ cao của [7] đã dựa vào mức độ thủy hóa xác định từ thí nghiệm nhiệt độ đoạn nhiệt. Trong đó, các dữ liệu cần thiết được lấy từ kết quả thực nghiệm cường độ chịu nén, ép chẻ và nhiệt độ đoạn nhiệt của 1 hỗn hợp bê tông cường độ cao. Các tham số nhiệt thủy hóa bao gồm tham số thời gian và tham số hình dạng được tính toán dựa vào đường cong đoạn nhiệt, từ đó xác định được mức độ thủy hóa. Đối với hỗn hợp bê tông cường độ cao thí nghiệm, cường độ chịu nén cũng có quan hệ tuyến tính với mức độ thủy hóa, tương tự như bê tông thường. Một nghiên cứu khác về xác định và đánh giá nhiệt thủy hóa của một số hỗn hợp phụ gia khoáng trong bê tông sử dụng cho kết cấu bê tông khối lớn của [5] trình bày phương pháp đo nhiệt lượng đẳng nhiệt để xác định nhiệt thủy hóa cho hỗn hợp phụ gia khoáng trong bê tông. Thí nghiệm được thực hiện cho 8 hỗn hợp bê tông khối lớn sử dụng trong công trình cầu ở Florida, Mỹ. Kết quả nghiên cứu cho thấy hàm lượng xi măng, tỷ lệ nước/xi măng, loại phụ gia khoáng và tỷ lệ phụ gia khoáng thay thế xi măng có ảnh hưởng đáng kể đến nhiệt thủy hóa
  19. 4 của hỗn hợp bê tông. Việc sử dụng hàm lượng lớn tro bay thay thế xi măng khi thiết kế thành phần hỗn hợp bê tông khối lớn sẽ làm giảm lượng nhiệt thủy hóa và do đó giảm thiểu khả năng nứt của bê tông. Tuy nhiên, các nghiên cứu này vẫn có hạn chế là kết cấu còn đơn giản chỉ thuần túy là khối bê tông không có cốt thép và cấp phối bê tông thí nghiêm chưa phải là cấp phối bê tông phù hợp với kết cấu phần dưới của công trình cầu (cấp C30 và C35). Do đó, tác giả đề xuất nghiên cứu luận án tiến sĩ với đề tài: “Ứng dụng lý thuyết đồng nhất hóa để phân tích trạng thái phân bố nhiệt độ và ứng suất do nhiệt thủy hóa xi măng trong bê tông cốt thép công trình cầu” để góp phần đề xuất mô hình tính toán lý thuyết, có kiểm chứng qua thực đo ngoài hiện trường để phân tích, đánh giá ứng xử do nhiệt thủy hóa xi măng trong kết cấu BTCT. Trong đó, mục tiêu, đối tượng nghiên cứu và phạm vi nghiên cứu của luận án được tóm tắt như sau: 2. Mục tiêu của luận án: Nội dung của luận án nhằm thực hiện các mục tiêu dưới đây: Mục tiêu thứ nhất là: xác định hệ số dẫn nhiệt tương đương, phạm vi ảnh hưởng và các đặc trưng vật liệu tương đương của lớp vỏ BTCT với một số loại đường kính cốt thép điển hình. Tiếp theo, mục tiêu thứ hai là: thực hiện thí nghiệm đoạn nhiệt trong phòng cho một số loại bê tông thông thường sử dụng cho công trình cầu để xây dựng đường cong nhiệt độ đoạn nhiệt của chúng. Cuối cùng, mục tiêu thứ ba là: sử dụng các giá trị nhiệt lượng phát sinh được thí nghiệm trong phòng và giá trị hệ số dẫn nhiệt tương đương, đặc trưng vật liệu tương đương của vật liệu BTCT để xây dựng chương trình phân tích sự phân bố nhiệt độ và ứng suất do nhiệt thủy hóa của xi măng trong kết cấu BTCT. 3. Đối tượng và phạm vi nghiên cứu của luận án: Về kết cấu: Nghiên cứu với một thân trụ cầu ngoài thực tế với kích thước lớn, phân tích sự phân bố nhiệt độ và ứng suất do nhiệt thủy hóa xi măng. Về vật liệu: Nghiên cứu với loại bê tông và cốt thép đáp ứng với điều kiện
  20. 5 thi công các bộ phận kết cấu của công trình cầu: Bê tông cấp C30 và C35 trong phòng thí nghiệm và bê tông cấp C30 với một thân trụ cầu thực tế. Về tải trọng: Cơ bản xác định sự phân bố nhiệt độ và biến dạng do ảnh hưởng của nhiệt thủy hóa xi măng, không xét tới tác động cơ học. 4. Cấu trúc của luận án: Luận án ngoài phần Mở đầu, Kết luận và Kiến nghị, Danh mục công bố của tác giả còn bao gồm bốn chương có cấu trúc như sau: Chương 1 trình bày tổng quan nghiên cứu về sự hình thành vết nứt trong kết cấu BTCT; Các phương pháp phân tích sự hình thành nhiệt thủy hóa của xi măng trong kết cấu bê tông ở thời kỳ đầu của các tác giả trong và ngoài nước; Giới thiệu các phương pháp phòng chống, hạn chế nứt kết cấu bê tông trụ, mố cầu khi không có lực tác động cơ học ở giai đoạn thi công. Chương 2 xác định hệ số dẫn nhiệt tương đương và các đặc trưng vật liệu tương đương của lớp BTCT bằng phương pháp đồng nhất hóa. Tiếp theo đó, kết quả của một số thí nghiệm xác định nhiệt độ đoạn nhiệt từ quá trình thủy hóa của xi măng cho bê tông thông thường dùng cho công trình cầu được thực hiện ở Chương 3 của luận án. Chương 4 là việc ứng dụng lý thuyết đồng nhất hóa để phân tích trạng thái phân bố nhiệt độ và ứng suất do nhiệt thủy hóa xi măng ở giai đoạn hình thành cường độ của khối BTCT trụ cầu. 5. Những đóng góp mới của luận án Thứ nhất, xây dựng chương trình tính toán các đặc trưng nhiệt của bê tông cốt thép bằng lý thuyết đồng nhất hóa (Chương trình TCon1): hệ số dẫn nhiệt tương đương, nhiệt dung riêng, phạm vi đồng nhất hóa vật liệu BTCT cho các cấu tạo lớp vỏ BTCT đặc trưng của trụ cầu. Thứ hai, xây dựng đường cong đoạn nhiệt cho một số cấp phối bê tông sử dụng trong kết cấu phần dưới của công trình cầu (bê tông C30, C35) theo phương pháp đoạn nhiệt trong phòng thí nghiệm và phương pháp bán đoạn nhiệt tại hiện trường. Thứ ba, xây dựng chương trình tính toán sự phân bố và thay đổi nhiệt độ và ứng suất theo thời gian do nhiệt thủy hóa xi măng (Chương trình TCon2) để so sánh với kết quả thực đo ngoài hiện trường.
nguon tai.lieu . vn