Xem mẫu

  1. TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ****** VŨ THỊ KHÁNH LINH NGHIÊN CỨU TỔNG HỢP VẬT LIỆU PHÂN HỦY SINH HỌC TRÊN CƠ SỞ POLYVINYL ANCOL/TINH BỘT KHOAI TÂY KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa hữu cơ HÀ NỘI – 2018
  2. TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ****** VŨ THỊ KHÁNH LINH NGHIÊN CỨU TỔNG HỢP VẬT LIỆU PHÂN HỦY SINH HỌC TRÊN CƠ SỞ POLYVINYL ANCOL/TINH BỘT KHOAI TÂY KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa hữu cơ Người hướng dẫn khoa học TS. CHU ANH VÂN HÀ NỘI – 2018
  3. LỜI CẢM ƠN Trong suốt thời gian nghiên cứu và hoàn thành khóa luận tốt nghiệp, bên cạnh sự lỗ lực của bản thân, tôi luôn nhận được sự quan tâm, giúp đỡ của thầy giáo, gia đình và bạn bè. Để có được thành quả ngày hôm nay, trước hết tôi xin bày tỏ lòng biết ơn sâu sắc nhất đến TS. Chu Anh Vân về sự nhiệt tình và hết lòng giúp đỡ tôi trong suốt quá trình thực hiện và hoàn thành khóa luận. Nhân dịp này, tôi cũng xin cảm ơn thầy cô trong khóa Hóa học trường Đại học Sư phạm Hà Nội 2 đã tạo điều kiện và thời gian cho tôi trong suốt quá trình thực hiện khóa luận. Cuối cùng tôi xin gửi đến bố mẹ, người thân, bạn bè lòng biết ơn và kính trọng sâu sắc, những người luôn động viên, khuyến khích, giúp tôi có đủ nghị lực vượt qua những khó khăn trong suốt quá trình thực hiện và hoàn thành khóa luận của mình. Mặc dù đã nỗ lực nhưng thời gian và kinh nghiệm bản thân còn nhiều hạn chế nên không tránh khỏi những thiếu sót. Tôi rất mong nhận được những ý kiến đóng góp của các thầy cô giáo, các bạn để đề tài của tôi được hoàn thiện hơn. Tôi xin chân thành cảm ơn! Hà Nội, ngày 06 tháng 05 năm 2018 Sinh viên Vũ Thị Khánh Linh
  4. DANH MỤC CHỮ VIẾT TẮT ASTM American Standard Testing Method ISO International standard organization KLPT Khối lượng phân tử MMT Montmorillonit PA Polyamit PE Polyetylen PP Polypropylen PS Polystiren PVA Polyvinyl ancol SEM Kính hiển vi điện tử quét TBKT Tinh bột khoai tây TGA Phân tích nhiệt trọng lượng
  5. DANH MỤC BẢNG BIỂU Bảng 1.1. Quan hệ giữa kích thước hạt và bề mặt riêng của nanoclay ............. 6 Bảng 1.2. Polyme PVA thương mại................................................................ 14 Bảng 1.3. Blend TB- PVA thương mại ........................................................... 17 Bảng 3.1. Tính chất cơ lý của vật liệu PVA/TBKT/nanoclay ........................ 24
  6. DANH MỤC HÌNH VẼ Hình 1.1. Cấu trúc của montmorillonit ............................................................. 3 Hình 1.2. Amylozơ (A) và amylopectin (B) trong tinh bột ............................ 16 Hình 1.3. Cơ chế phân hủy PVA bằng PVADH ............................................. 19 Hình 2.1. Quy trình sản xuất vật liệu PVA/TBKT ......................................... 20 Hình 3.1. Ảnh hưởng của hàm lượng nanoclay tới độ bền kéo đứt của vật liệu ................................................................................................................... 25 Hình 3.2. Ảnh hưởng của hàm lượng nanoclay tới độ dãn dài của vật liệu ... 25 Hình 3.3. Cấu tạo hóa học của vật liệu PVA/TBKT/nanoclay ....................... 26 Hình 3.4. Ảnh SEM của PVA/TBKT/2% nanoclay (a); PVA/TBKT/3% nanoclay (b) ..................................................................................................... 27 Hình 3.5. Giản đồ nhiễu xạ tia X của mẫu màng PVA/TBKT/nanoclay........ 28 Hình 3.6. Giản đồ phân tích nhiệt vật liệu PVA/TBKT.................................. 29 Hình 3.7. Mẫu màng phủ đất trong 0 – 10 ngày ............................................. 30
  7. MỤC LỤC LỜI CẢM ƠN DANH MỤC CHỮ VIẾT TẮT DANH MỤC BẢNG BIỂU DANH MỤC HÌNH VẼ MỞ ĐẦU ........................................................................................................... 1 CHƯƠNG 1. TỔNG QUAN ............................................................................. 3 1.1. Nanoclay..................................................................................................... 3 1.1.1. Khái niệm nanoclay................................................................................. 3 1.1.2. Cấu trúc sét hữu cơ.................................................................................. 3 1.1.3. Tính chất của sét hữu cơ ......................................................................... 3 1.1.4. Ứng dụng của sét hữu cơ......................................................................... 4 1.2. Giới thiệu chung về polyme nanocompozit ............................................... 4 1.2.1. Khái niệm về vật liệu polyme nanocompozit ......................................... 4 1.2.2. Phân loại và đặc điểm của vật liệu polyme nanocompozit ..................... 6 1.2.2.1. Phân loại ............................................................................................... 6 1.2.2.2. Đặc điểm của vật liệu polyme nanocompozit ...................................... 7 1.2.3. Những ưu điểm của vật liệu polyme nanocompozit ............................... 7 1.3. Vật liệu polyme phân hủy sinh học............................................................ 8 1.3.1. Giới thiệu về polyme phân hủy sinh học ................................................ 8 1.3.2. Các yếu tố ảnh hưởng đến quá trình phân hủy sinh học ......................... 9 1.3.2.1. Ảnh hưởng của cấu trúc polyme .......................................................... 9 1.3.2.2. Ảnh hưởng của hình thái polyme ....................................................... 10 1.3.2.3. Ảnh hưởng của chiếu xạ và xử lý hóa học ......................................... 10 1.3.2.4. Ảnh hưởng của khối lượng phân tử polyme ...................................... 10
  8. 1.3.3. Tác nhân gây phân hủy sinh học ........................................................... 11 1.3.3.1. Vi sinh vật .......................................................................................... 11 1.3.3.2. Enzym................................................................................................. 12 1.3.4. Ứng dụng polyme phân hủy sinh học ................................................... 12 1.3.4.1. Ứng dụng trong y học ........................................................................ 12 1.3.4.2. Ứng dụng trong nông nghiệp ............................................................. 13 1.3.4.3. Bao bì ................................................................................................. 13 1.3.5. Blend PVA/TBKT ................................................................................. 14 1.3.5.1. PVA .................................................................................................... 14 1.3.5.2. Tinh bột .............................................................................................. 15 1.3.5.3. Blend Tinh bột – PVA ....................................................................... 17 CHƯƠNG 2. THỰC NGHIỆM ...................................................................... 20 2.1. Nguyên liệu .............................................................................................. 20 2.2. Cách tiến hành .......................................................................................... 20 2.3. Các phương pháp phân tích cấu trúc, tính chất của màng polyme PHSH 21 2.3.1. Phương pháp xác định độ bền cơ học ................................................... 21 2.3.2. Phương pháp nhiễu xạ tia X (XRD) ...................................................... 21 2.3.3. Phương pháp kính hiển vi điện tử quét (SEM) ..................................... 22 2.3.4. Phương pháp phân tích nhiệt trọng lượng (TGA) ................................. 22 CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN .................................................. 23 3.1. Xác định tính chất cơ lý của vật liệu PVA/TBKT/nanoclay ................... 23 3.2. Cấu trúc hình thái của vật liệu ................................................................. 26 3.3. Bước đầu chế tạo màng phủ nông nghiệp có khả năng phân hủy............ 30 KẾT LUẬN ..................................................................................................... 31 TÀI LIỆU THAM KHẢO ............................................................................... 32
  9. MỞ ĐẦU Ngày nay các vật liệu trên cơ sở polyme như: chất dẻo, cao su, sợi keo dán, sơn… đã gắn bó mật thiết với mọi ngành, mọi lĩnh vực của sản xuất và sinh hoạt của con người do những tính chất ưu việt của nó (độ bền cao, khả năng uốn dẻo, độ dãn dài, độ bền kéo đứt cao) mà khó có vật liệu nào có thể đáp ứng được. Với sự phát triển của ngành công nghiệp hóa dầu, sự nghiên cứu chế tạo vật liệu polyme rất được quan tâm và chú ý. Thông qua các con số thống kê ta mới thực sự đánh giá hết tầm quan trọng của vật liệu polyme. Nếu chỉ tính riêng năm 1996, bình quân đầu người tại các nước công nghiệp phát triển sử dụng 80 – 100 kg polyme, còn các nước đang phát triển là 1 – 10 kg và con số này hiện nay vẫn không ngừng tăng lên. Như vậy, vật liệu polyme với sự phong phú về chủng loại và đa dạng về tính chất đã có mặt ở khắp mọi lĩnh vực của cuộc sống, là một bước đột phá mới cho các ngành chế tạo vật liệu. Ước tính mỗi năm có thêm khoảng 20 – 30 triệu tấn polyme trên thế giới và nếu không có biện pháp xử lý hữu hiệu thì con số này sẽ ngày càng tăng lên. Bản thân rác thải polyme không tự gây ra độc hại nhưng số lượng rác thải ngày càng tăng lên và không phân hủy được sẽ là môi trường cho các loại sinh vật, côn trùng mang mầm bệnh sinh sôi và phát triển gây ô nhiễm môi trường và ảnh hưởng đến sức khỏe con người. Chính vì thế trong những năm gần đây, các nhà khoa học trên thế giới đã tập trung nghiên cứu điều chế và ứng dụng vật liệu polyme dễ phân hủy khi thải ra môi trường, nhằm mục đích ngăn ngừa sự ô nhiễm môi trường. Polyme dễ phân hủy được dùng chủ yếu để sản xuất các vật dụng như bao bì, túi đựng, màng che phủ đất, bầu ươm cây giống…các vật dụng này sau khi không sử dụng sẽ bị phân hủy không gây ô nhiễm môi trường sống. Polyme 1
  10. dễ phân hủy cũng được dùng trong lĩnh vực bảo quản thực phẩm kể cả ở điều kiện tự nhiên cũng như làm lớp bao phủ thực phẩm bảo quản ở nhiệt độ thấp (trong tủ lạnh). Ngoài ra polyme dễ phân hủy do môi trường còn được sử dụng trong một số lĩnh vực khác như y tế (chất mang thuốc). Do nhu cầu bảo vệ môi trường trước việc phát sinh ngày càng nhiều chất thải polyme khó phân hủy, lĩnh vực nghiên cứu và ứng dụng polyme dễ phân hủy sinh học ngày càng phát triển mạnh mẽ. Tuy nhiên cũng cần phải thừa nhận rằng còn rất nhiều thách thức trong lĩnh vực này, đòi hỏi sự nỗ lực nhiều hơn nữa của đội ngũ cán bộ khoa học và công nghệ. Tại Việt Nam, với sự quan tâm của Nhà nước, với sự cố gắng và sự hợp tác của các nhà nghiên cứu, kĩ thuật, công nghệ, hy vọng chúng ta sẽ đạt được nhiều kết quả trong lĩnh vực nghiên cứu và sử dụng polyme dễ phân hủy sinh học. Cũng chính từ những lý do này mà chúng tôi chọn tinh bột khoai tây – vật liệu dễ kiếm trên thị trường để tiến hành nghiên cứu cứu đề tài: “Nghiên cứu tổng hợp vật liệu phân hủy sinh học trên cơ sở polyvinyl ancol/tinh bột khoai tây”. Mục đích của đề tài: Biến tính polyvinyl ancol bằng tinh bột khoai tây trong dung môi thích hợp, từ đó phối trộn hạt nano để tổng hợp vật liệu nanocompozit có khả năng phân hủy sinh học. Thử nghiệm ứng dụng vật liệu polyvinyl ancol/tinh bột khoai tây (PVA/TBKT) làm màng phủ đất. Nội dung chính của đề tài: - Xác định tính chất cơ lý của vật liệu PVA/TBKT/nanoclay. - Nghiên cứu cấu trúc hình thái và tính chất nhiệt của vật liệu PVA/TBKT. - Thử nghiệm làm màng che phủ đất. 2
  11. CHƯƠNG 1. TỔNG QUAN 1.1. Nanoclay 1.1.1. Khái niệm nanoclay Nanoclay (còn gọi là nano khoáng sét) được cấu tạo từ các lớp mỏng, mỗi lớp có chiều dày từ 1 đến vài nanomet, có chiều dài từ vài trăm đến vài nghìn nanomet. Loại nanoclay đầu tiên được tìm thấy trên thế giới là montmorillon, ở Pháp, năm 1874. 1.1.2. Cấu trúc sét hữu cơ Sét hữu cơ (nanoclay hữu cơ) là sản phẩm của quá trình tương tác giữa các khoáng có cấu trúc lớp thuộc nhóm smectit, đặc trưng nhất là bentonite và các cation hữu cơ hoặc các hợp chất hữu cơ phân cực, đặc biệt là các amin bậc 1, bậc 2, bậc 3, bậc 4 có mạch thẳng, nhánh và vòng với các mạch có độ dài ngắn khác nhau. Hình 1.1. Cấu trúc của montmorillonit 1.1.3. Tính chất của sét hữu cơ - Tính hấp phụ: Do sét hữu cơ có tính ưa hữu cơ nên sự hấp phụ xảy ra chủ yếu đối với các phân tử hữu cơ trong môi trường lỏng hoặc khí. Trong môi trường lỏng khả năng hấp phụ tăng khi điện tích lớp, khoảng không gian 3
  12. của các lớp, kích thước alkyl amoni tăng và lượng cation hữu cơ trong sét đạt xấp xỉ mức độ bão hòa với dung lượng trao đổi cation. - Tính trương nở: Sét hữu cơ có khả năng trương nở tốt trong các dung môi hữu cơ. Khi được phân tán vào môi trường các chất hữu cơ, tính trương nở làm tăng độ phân tán của các chất hữu cơ, do đó sét hữu cơ được ứng dụng trong nhiều lĩnh vực khác nhau như làm chất chống sa lắng trong sơn, trong mực in, làm sạch nước bị ô nhiễm bởi dầu, mỡ... - Độ bền của sét hữu cơ: Độ bền của sét hữu cơ một phần là do lực hút VanderWaals giữa các mạch hữu cơ với bề mặt hạt sét. Hiệu ứng này tăng nhanh theo chiều dài mạch hữu cơ, một phần khác là do độ bền nhiệt động học của các cation amoni bậc 4 trên bề mặt các hạt sét lớn hơn so với độ bền nhiệt động học của chúng được hiđrat hóa. Do vậy sét hữu cơ tương đối ổn định nhiệt, nó có thể sử dụng ở nhiệt độ lên tới 250oC. 1.1.4. Ứng dụng của sét hữu cơ Sét hữu cơ đã được ứng dụng trong nhiều lĩnh vực khác nhau như: Xử lý môi trường: sét hữu cơ là chất hấp phụ mạnh để loại bỏ dầu, chất hoạt động bề mặt và các dung môi như metyletyl xeton, t-butyl ancol và các chất khác. Chế tạo vật liệu polyme clay nanocompozit: hiện nay, ứng dụng quan trọng nhất của sét hữu cơ là trong lĩnh vực điều chế các polyme nanocompozit, sét hữu cơ chiếm 70% các loại vật liệu nano thương mại được dùng để điều chế các polyme compozit. Sét hữu cơ cũng được sử dụng làm chất chống sa lắng trong môi trường hữu cơ do sét hữu cơ có khả năng trương nở và tạo gel trong dung môi hữu cơ… 1.2. Giới thiệu chung về polyme nanocompozit 1.2.1. Khái niệm về vật liệu polyme nanocompozit Vật liệu polyme nanocompozit là loại vật liệu gồm pha nền (polyme) và pha gia cường ở các dạng khác nhau có kích thước cỡ nanomet (dưới 100 4
  13. nm). Như vậy có thể hiểu, vật liệu polyme nanocompozit là vật liệu có nền là polyme, copolyme hoặc polyme blend và cốt là các hạt hay sợi khoáng thiên nhiên hoặc tổng hợp có ít nhất một trong 3 chiều có kích thước trong khoảng 1 – 100 nm (kích cỡ nanomet). Mặt khác, như ta đã biết cao su là một loại polyme như vậy có thể hiểu rằng vật liệu cao su nanocompozit là một polyme nanocompozit nhưng có nền là cao su hoặc cao su blend. Như vậy tất cả mọi đặc tính của cao su nanocompozit cũng giống như của polyme nanocompozit. Vật liệu polyme nanocompozit kết hợp được cả ưu điểm của vật liệu vô cơ (như tính chất cứng, bền nhiệt,…) và ưu điểm của polyme hữu cơ (như tính linh động, mềm dẻo, là chất điện môi và khả năng dễ gia công…). Hơn nữa chúng cũng có những tính chất đặc biệt của chất độn nano điều này dẫn tới sự cải thiện tính chất cơ lý của vật liệu. Một đặc tính riêng biệt của vật liệu polyme nanocompozit đó là kích thước nhỏ của chất độn dẫn tới sự gia tăng mạnh mẽ diện tích bề mặt chung khi so sánh với các compozit truyền thống [1]. Bảng 1.1 là quan hệ giữa kích thước hạt và bề mặt riêng của vật liệu. Diện tích bề mặt riêng của vật liệu gia cường chính là bề mặt chung với polyme nền. Diện tích bề mặt chung này tạo ra một tỷ lệ thể tích đáng kể của polyme có bề mặt chung với những tính chất khác biệt so với các polyme khối ngay cả khi ở tải trọng thấp. Vật liệu nền sử dụng trong chế tạo polyme nanocompozit rất đa dạng, phong phú bao gồm cả nhựa nhiệt dẻo và nhựa nhiệt rắn, thường là: nhựa polyetylen (PE), nhựa polypropylen (PP), nhựa polyeste, các loại cao su,… 5
  14. Bảng 1.1. Quan hệ giữa kích thước hạt và bề mặt riêng của nanoclay Đường kính hạt Bề mặt riêng [cm2/g] 1 cm 3 1 mm 3.10 100 µm 3.102 10 µm 3.103 1 µm 3.104 100 nm 3.105 10 nm 3.106 1 nm 3.107 Khoáng thiên nhiên: chủ yếu là đất sét – vốn là các hạt silica có cấu tạo dạng lớp như montmorillonit, vermicullit, bentonit kiềm tính cũng như các hạt graphit,… Các chất gia cường nhân tạo: các tinh thể như silica, CdS, PbS, CaCO3,… hay ống cacbon nano, sợi cacbon nano,… 1.2.2. Phân loại và đặc điểm của vật liệu polyme nanocompozit 1.2.2.1. Phân loại Polyme nanocompozit nói chung hay cao su nanocompozit nói riêng được phân loại dựa vào số chiều có kích thước nanomet của vật liệu gia cường [2]: - Loại 1: Là loại hạt có cả ba chiều có kích thước nanomet, chúng là các hạt nano (SiO2, CaCO3,…). - Loại 2: Là loại hạt có hai chiều có kích thước nanomet, chiều thứ ba có kích thước lớn hơn, thường là ống nano hoặc sợi nano (thường là ống, sợi carbon nano) và được dùng làm phụ gia nano tạo cho polyme nanocompozit có các tính chất đặc biệt. 6
  15. - Loại 3: Là loại chỉ có một chiều có kích thước cỡ nanomet. Vật liệu dạng này thường có nguồn gốc là các loại khoáng sét, graphen. 1.2.2.2. Đặc điểm của vật liệu polyme nanocompozit Với pha phân tán là các loại bột có kích thước nano rất nhỏ nên chúng phân tán rất tốt vào trong polyme, tạo ra các liên kết ở mức độ phân tử giữa các pha với nhau cho nên cơ chế khác hẳn với compozit thông thường. Các phần tử nhỏ phân tán tốt vào các pha nền, dưới tác dụng của lực bên ngoài tác động vào nền sẽ chịu toàn bộ tải trọng, các phần tử nhỏ mịn phân tán đóng vai trò làm tăng độ bền của vật liệu đồng thời làm cho vật liệu cũng ổn định ở nhiệt độ cao. Do kích thước nhỏ ở mức độ phân tử nên khi kết hợp với các pha nền có thể tạo ra các liên kết vật lý nhưng có độ bền tương đương với liên kết hóa học về mặt vị trí, vì thế cho phép tạo ra các vật liệu có nhiều tính chất mới, ví dụ như tạo các polyme dẫn có rất nhiều ứng dụng trong thực tế. Vật liệu gia cường có kích thước rất nhỏ nên có thể phân tán trong pha nền tạo ra cấu trúc rất đặc, do đó có khả năng dùng làm vật liệu bảo vệ theo cơ chế che chắn (barie) rất tốt. 1.2.3. Những ưu điểm của vật liệu polyme nanocompozit So với vật liệu polyme compozit truyền thống, vật liệu polyme nanocompozit có những ưu điểm chính như sau [2]: - Vật liệu nano gia cường hiệu quả hơn bởi vì kích cỡ của nó nhỏ hơn dẫn tới sự cải thiện đáng kể tính chất của nền (chỉ với một lượng nhỏ vật liệu gia cường) điều này làm cho vật liệu polyme nanocompozit nhẹ hơn, dễ gia công hơn. - Sự chuyển ứng suất từ nền sang chất độn hiệu quả hơn là do diện tích bề mặt lớn và khả năng tương tác tốt giữa các pha. 7
  16. 1.3. Vật liệu polyme phân hủy sinh học 1.3.1. Giới thiệu về polyme phân hủy sinh học Phân hủy sinh học (PHSH) của nhựa phụ thuộc vào cấu tạo hóa học của vật liệu và vào thành phần của sản phẩm vật liệu mà không phải phụ thuộc và nguyên liệu đầu sản xuất ra chúng. Do vậy, nhựa phân hủy sinh học có thể được chế tạo từ nhựa tự nhiên và nhựa tổng hợp. Nhựa tự nhiên phân hủy sinh học trước hết đi từ các nguồn có sẵn (như tinh bột) và có thể được chế tạo hoặc bằng con đường tự nhiên hoặc con đường tổng hợp từ các nguồn sẵn có. Nhựa tổng hợp phân hủy sinh học đi từ các nguồn không tái tạo – từ sản phẩm dầu mỏ. Nhiều loại polyme được thông báo là “Phân hủy sinh học” nhưng thực tế là “Bẻ gãy sinh học” , “ Thủy phân sinh học” hoặc “ Phân hủy quang – sinh học”. Những loại polyme khác nhau này được gọi dưới một tên chung là “Polyme phân hủy trong môi trường”. Các loại nhựa phân hủy sinh học được xem xét dưới góc độ cơ chế phân hủy.Các cơ chế đó là: Phân hủy sinh học; chôn ủ; phân hủy thủy phân sinh học; phân hủy quang – sinh học; và bẻ gãy sinh học. Các định nghĩa phân hủy sinh học được dùng ở đây để mô tả các quá trình phân hủy của “ Nhựa phân hủy sinh học” hiện nay đang có sẵn và đang được sản xuất. + Phân hủy sinh học ASTM định nghĩa phân hủy sinh học là khả năng xảy ra phân hủy thành CO2, khí metan, nước, các hợp chất vô cơ hoặc sinh khối, trong đó cơ chế áp đảo là tác động của enzym của vi sinh vật đo được bằng các thử nghiệm chuẩn trong thời gian xác định phản ánh được điều kiện phân hủy. Tốc độ phân hủy sinh học phụ thuộc nhiều vào độ dày và hình học của sản phẩm. Tốc độ phân hủy nhanh thường xảy ra với màng mỏng. Sản phẩm với kích thước dày như dạng tấm, khay đựng thực phẩm, dao, thìa, nĩa cần đến khoảng một năm để phân hủy. 8
  17. + Chôn ủ ASTM định nghĩa nhựa chôn ủ như sau: Đó là nhựa có khả năng xảy ra phân hủy sinh học ở môi trường ủ như một phần của chương trình sẵn có, rằng nhựa sau đó không thể phân biệt bằng mắt trần được nữa, phân hủy thành CO2, nước, hợp chất vô cơ và sinh khối với tốc độ phù hợp với vật liệu ủ (ví dụ như xenlulozơ). + Thủy phân – phân hủy sinh học và quang - phân hủy sinh học Polyme thủy phân – phân hủy sinh học và quang – phân hủy sinh học bị bẻ gãy bằng 2 giai đoạn. Lúc đầu thủy phân hoặc phân hủy quang, sau đó là giai đoạn phân hủy sinh học. Cũng có loại polyme tan trong nước và phân hủy quang riêng lẻ. + Bẻ gãy sinh học Nhiều loại polyme được thông báo “Phân hủy sinh học”, nhưng thực chất là bẻ gãy sinh học hoặc phân hủy không có tác động của vi sinh vật ít nhất ở giai đoạn đầu. Người ta cũng nói đây là quá trình gãy vô sinh (lão hóa nhiệt) hoặc bẻ gãy quang (lão hóa bằng UV). Polyme phân hủy sinh học là những polyme được tạo ra trong tự nhiên trong các chu kỳ sinh trưởng của các cơ thể sống, do vậy chúng cũng thuộc vào loại các polyme tự nhiên. Việc tổng hợp chúng, nói chung, bao gồm các phản ứng trùng hợp phát triển mạch các monome, xúc tác hoạt hóa bằng enzym. Các monome này được hình thành một cách đặc thù nội trong các tế bào nhờ các quá trình trao đổi phức tạp. 1.3.2. Các yếu tố ảnh hưởng đến quá trình phân hủy sinh học 1.3.2.1. Ảnh hưởng của cấu trúc polyme Các phân tử polyme gốc tự nhiên như protein, xenlulozo và tinh bột nói chung bị phân hủy trong môi trường sinh vật do bị thủy phân hoặc oxy hóa. Chúng ta hoàn toàn không ngạc nhiên khi đa phần các polyme tổng hợp phân 9
  18. hủy sinh học chứa các liên kết dễ bị thủy phân, ví dụ như: liên kết amit – enamin, este, ure và uretan dễ bị các vi sinh vật và enzym hydrolytic phân hủy. 1.3.2.2. Ảnh hưởng của hình thái polyme Một trong những khác biệt cơ bản giữa protein và polyme tổng hợp là dọc theo các mạch polypeptit, protein không có các mắt xích lặp lại tương tự. Sự thiếu trật tự này là nguyên nhân làm cho mạch protein kém tạo kết tinh hơn. Rất có thể là tính chất này đã làm cho protein dễ bị phân hủy sinh học. Mặt khác các polyme tổng hợp mới nói chung, có mắt xích ngắn và độ trật tự cao đã làm tăng khả năng kết tinh, làm cho các nhóm có khả năng thủy phân khó tiếp cận với enzym. Ta thấy rõ ràng là những polyme tổng hợp với mắt xích dài khó tạo ra cấu trúc tinh thể, nên dễ bị phân hủy sinh học. 1.3.2.3. Ảnh hưởng của chiếu xạ và xử lý hóa học Quá trình quang phân polyme bằng tia UV và tia  tạo ra gốc tự do hoặc ion thông thường dẫn đến đứt mạch và liên kết ngang. Phản ứng oxy hóa cũng xảy ra làm cho tình thế phức tạp thêm do việc phơi ra ánh sáng luôn luôn có mặt của oxy. Nói chung điều này sẽ làm thay đổi khả năng phân hủy của vật liệu. Trước tiên người ta chờ đợi khả năng gia tăng tộc độ phân hủy cho đến lúc hầu hết các phân đoạn polyme bị dùng hết, tiếp đến là phân hủy phần polyme hóa lưới với tốc độ chậm hơn. 1.3.2.4. Ảnh hưởng của khối lượng phân tử polyme Có rất nhiều nghiên cứu về ảnh hưởng của KLPT polyme lên quá trình phân hủy sinh học. Sự khác nhau cơ bản có thể thấy được đó là giới hạn sự thay đổi trong quá trình phân hủy, sự khác nhau về hình thái độ ưa nước và kị nước của polyme có KLPT khác nhau. Vi sinh vật sản xuất ra enzym ngoại bào (làm phân hủy polyme tại nhóm cuối) và enzym nội bào (phân hủy polyme ngẫu nhiên dọc theo mạch). Người ta chờ đợi sự ảnh hưởng lớn của KLPT lên tốc độ phân hủy với trường hợp enzym ngoại bào và một ảnh hưởng nhỏ của KLPT trong enzym nội bào. Chất dẻo giữ nguyên miễn dịch 10
  19. một cách tương đối với tấn công của vi khuẩn khi mà KLPT vẫn còn cao. Nhiều chất dẻo như PE, PP và PS không ủng hộ sự phát triển của vi khuẩn. Tuy nhiên hydrocacbon KLPT thấp lại bị vi sinh vật phân hủy. Chúng bị vi sinh vật chiếm, bị “hoạt hóa” lên khi gắn với đồng enzym A và chuyển hóa thành tế bào ngay trong tế bào vi sinh vật. Tuy nhiên quá trình này không thực hiện tốt trong môi trường ngoại bào và phân tử của chất dẻo quá lớn không chui vào trong tế bào được. Vấn đề này lại không xảy ra với polyme tự nhiên như tinh bột và xenlulozơ vì chuyển hóa thành cấu tử KLPT thấp nhờ phản ứng enzym xảy ra ở bên ngoài tế bào sinh vật. Tuy nhiên, sự phân hủy quang và phân hủy hóa học có thể sẽ làm giảm KLPT đến mức mà vi sinh vật có thể tấn công được. 1.3.3. Tác nhân gây phân hủy sinh học 1.3.3.1. Vi sinh vật Có hai loại vi sinh vật gây phản ứng phân hủy sinh học đáng quan tâm nhất, đó là nấm và vi sinh vật. 1.3.3.1.1. Nấm Nấm là những vi sinh vật rất quan trọng gây ra sự phân hủy vật liệu. Nấm là loại cơ thể dạng nhân rỗng không có chất diệp lục, sinh sản vô tính. Phần lớn chúng có cấu trúc thể, dạng sợi, thành tế bào có dạng chitin hoặc xenlulozơ. Có hơn 80000 loài đã được biết đến. Nấm có mặt ở khắp mọi nơi. Tầm quan trọng của chúng làm nhân tố gây suy giảm vật liệu là kết quả của tác động của enzym do chúng sản xuất ra. Enzym đã phá hủy hợp chất sống để cung cấp thức ăn có trong thành phần của polyme. Điều kiện nhất định, như độ ẩm cao cũng như sự có mặt của vật liệu cung cấp thức ăn là quan trọng cho sự phát triển tối ưu của nấm. Nhóm nấm cho mục đích thử nghiệm trong lĩnh vực polyme tự nhiên và chọn để sử dụng trong quy trình thử nghiệm polyme tổng hợp là thuộc nhóm dị thể, không có sự giống nhau giữa chúng. 11
  20. 1.3.3.1.2 .Vi khuẩn Schyzomycetes, một loại vi khuẩn có vai trò quyết định trong mối quan hệ với nấm, làm suy giảm polyme. Vi khuẩn có thể là que tế bào đơn chiếc, khuẩn cầu hoặc khuẩn sợ xoắn. Những loại khác có dạng mạch hoặc dạng sợi tóc. Vi khuẩn có thể là ưa khí hoặc kị khí, ngược lại nấm cần thiết phải có không khí. Phần lớn vi khuẩn không có chất diệp lục. Hoạt động phân hủy của chúng cũng chỉ đơn thuần là sản xuất ra enzym, phá hủy các hợp chất không ăn được để tạo ra thức ăn. Vi khuẩn tồn tại trong đất là tác nhân quan trọng làm suy giảm vật liệu, đặc biệt ảnh hưởng đến tuổi thọ cây bông, sản phẩm gỗ, phân hủy sợi. 1.3.3.2. Enzym Enzym thực chất là xúc tác sinh học có cơ chế hoạt động giống như xúc tác hóa học. Khi giảm năng lượng hoạt hóa xuống, chúng có thể tăng tốc độ phản ứng. Khi có mặt của enzym, tốc độ phản ứng có thể tăng lên 108 – 1020 lần. Đa phần các enzym là những protein cấu trúc dạng phức ba chiều. 1.3.4. Ứng dụng polyme phân hủy sinh học Các ứng dụng polyme phân hủy tập trung vào 3 lĩnh vực sau: - Y học. - Nông nghiệp - Hàng tiêu dùng Một số ứng dụng đã có sản phẩm thương mại. Do bản chất đặc biệt và giá trị sử dụng cao, ứng dụng trong y học phát triển hơn hai loại ứng dụng kia. 1.3.4.1. Ứng dụng trong y học Chất dẻo phân hủy sinh học được ứng dụng làm vật liệu cấy trong phẫu thuật chỉnh hình và mạch máu, chỉ khâu phẫu thuật, ứng dụng trong chữa mắt… Gần đây cụm từ “Vật liệu sinh học” được hiểu là vật liệu ứng dụng chế tạo chi tiết trong y học, tương tác trực tiếp với hệ sinh học. Vật liệu sinh học nói chung được sử dụng với các mục đích sau: 12
nguon tai.lieu . vn