Xem mẫu

  1. TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH KHOA HÓA HỌC -------- KHÓA LUẬN TỐT NGHIỆP ĐỀ TÀI NGHIÊN CỨU QUY TRÌNH XÁC ĐỊNH HÀM LƯỢNG THỦY NGÂN TRONG MỘT SỐ LOẠI SON MÔI BẰNG PHƯƠNG PHÁP PHỔ HẤP THỤ NGUYÊN TỬ SỬ DỤNG KỸ THUẬT HÓA HƠI LẠNH Giảng viên hướng dẫn: ThS. Nguyễn Ngọc Hưng Người thực hiện: Bùi Phước Hùng MSSV: K39.201.037 Tp. Hồ Chí Minh, tháng 05 năm 2017
  2. Khóa luận tốt nghiệp Bùi Phước Hùng LỜI CẢM ƠN Trước hết, em muốn gửi lời cảm ơn sâu sắc nhất đến thầy ThS. Nguyễn Ngọc Hưng, người đã tận tình hướng dẫn em trong suốt quá trình thực hiện khóa luận tốt nghiệp. Em xin chân thành cảm ơn đến cô Nguyễn Thị Tuyết Nhung, thầy Nguyễn Thành Lộc, thầy Trương Chí Hiền, thầy Trần Bửu Đăng những người đã giúp đỡ em trong quá trình tiến hành thực nghiệm và các thầy cô trong khoa Hóa – trường Đại học Sư phạm Tp. HCM đã giảng dạy em bốn năm qua. Cuối cùng, em muốn gửi lời cảm ơn đến gia đình, anh chị, bạn bè, những người luôn động viên, ủng hộ, giúp đỡ em trong quá trình thực hiện khóa luận. Em xin chân thành cảm ơn! Tp. HCM, ngày 01 tháng 05 năm 2017 Bùi Phước Hùng
  3. Khóa luận tốt nghiệp Bùi Phước Hùng CHỮ VIẾT TẮT VÀ KÝ HIỆU TRONG LUẬN VĂN AAS Phổ hấp thụ nguyên tử AES Phổ phát xạ nguyên tử CV Kỹ thuật hóa hơi lạnh GC Sắc ký khí GF Kỹ thuật hóa hơi bằng lò Graphit ICP Nguồn plasma cao tần cảm ứng LOD Giới hạn phát hiện LOQ Giới hạn định lượng MS Phổ khối lượng STT Số thứ tự UV Tử ngoại VIS Vùng khả kiến
  4. Khóa luận tốt nghiệp Bùi Phước Hùng DANH MỤC CÁC BẢNG Trang Bảng 1.1. Một số hằng số vật lý của thủy ngân .............................................................2 Bảng 2.1. Danh mục các hóa chất khác sử dụng trong đề tài nghiên cứu....................12 Bảng 2.2. Các điều kiện khảo sát ảnh hưởng của v và h đến độ hấp thụ .....................13 Bảng 2.3. Các điều kiện khảo sát ảnh hưởng của c1 và c2 đến độ hấp thụ...................14 Bảng 2.4. Các điều kiện khảo sát ảnh hưởng của V, L và t đến độ hấp thụ ...............18 Bảng 2.5. Thông tin về các mẫu son môi khảo sát ........................................................19 Bảng 3.1. Các điều kiện đo phổ hấp thụ nguyên tử của thủy ngân ..............................22 Bảng 3.2. Các mức và khoảng biến thiên của hai yếu tố tốc độ dòng khí mang và chiều cao ống chữ T ......................................................................................................................22 Bảng 3.3. Ma trận QHTN phương án quay bậc hai, hai yếu tố ....................................23 Bảng 3.4. Các giá trị hằng số trong phương trình tính các hệ số hồi quy ..........................23 Bảng 3.5. Các mức và khoảng biến thiên của 2 yếu tố nồng độ chất khử và axit .....26 Bảng 3.6. Ma trận QHTN bậc hai, hai yếu tố ................................................................26 Bảng 3.7. Khảo sát ảnh hưởng của độ rộng khe đo .......................................................29 Bảng 3.8 Các điều kiện đo phổ hấp thụ nguyên tử Hg của máy CV-AAS .................30 Bảng 3.9. Nồng độ các dung dịch chuẩn xác định khoảng tuyến tính của Hg ...........30 Bảng 3.10. Khảo sát khoảng nồng độ tuyến tính ...........................................................31 Bảng 3.11. Nồng độ các dung dịch chuẩn xác định đường chuẩn của Hg .................32 Bảng 3.12. Khảo sát xây dựng đường chuẩn ..................................................................32 Bảng 3.13. Phương trình hồi quy của thủy ngân ............................................................34 Bảng 3.14. Kết quả độ lặp lại của phép đo Hg ...............................................................35 Bảng 3.15. Khảo sát ảnh hưởng của HClO4 đến quy trình xử lý mẫu ........................35 Bảng 3.16. Khảo sát ảnh hưởng của dung dịch KMnO4 25 g.L-1 ............................................36 Bảng 3.17. Khảo sát ảnh hưởng của thể tích NH2OH.HCl 50 g.L-1 ......................................37 Bảng 3.18. Khảo sát thể tích axit HNO3 đặc xử lý mẫu ................................................38 Bảng 3.19. Khảo sát mức nhiệt độ xử lý mẫu ................................................................39 Bảng 3.20. Khảo sát thời gian xử lý mẫu ........................................................................40 Bảng 3.21. Các mức và khoảng biến thiên của các yếu tố ...........................................41
  5. Khóa luận tốt nghiệp Bùi Phước Hùng Bảng 3.22. Ma trận QHTN bậc 2 ba yếu tố ....................................................................41 Bảng 3.23. Khảo sát hệ số thu hồi các loại son môi ......................................................46 Bảng 3.24. Kết quả phân tích son môi ............................................................................47
  6. Khóa luận tốt nghiệp Bùi Phước Hùng DANH MỤC CÁC HÌNH Trang Hình 3.1. Ảnh hưởng của v, h đến độ hấp thụ quang của dung dịch Hg2+ 6μg.L−1 ....25 Hình 3.2. Ảnh hưởng của c1 , c2 đến độ hấp thụ quang của dung dịch Hg2+ 6μg.L−1 .28 Hình 3.3. Đồ thị khảo sát khoảng nồng độ tuyến tính của Hg .....................................31 Hình 3.4. Quan hệ tuyến tính giữa độ hấp thụ và nồng độ thủy ngân .........................33 Hình 3.5. Ảnh hưởng của thể tích HClO4 đến độ hấp thụ quang .................................36 Hình 3.6. Khảo sát ảnh hưởng của dung dịch KMnO4 25 g.L-1 ..................................37 Hình 3.7. Khảo sát thể tích HNO3 đặc xử lý mẫu ..........................................................38 Hình 3.8. Khảo sát mức nhiệt độ phá mẫu .....................................................................39 Hình 3.9. Khảo sát thời gian phá mẫu .............................................................................40 Hình 3.10. Ảnh hưởng của L, V đến độ hấp thụ của mẫu tại 3 điểm t = 80, 100, 120 phút .......................................................................................................................................43
  7. Khóa luận tốt nghiệp Bùi Phước Hùng MỤC LỤC Trang MỞ ĐẦU..................................................................................................................................... 1 CHƯƠNG 1: TỔNG QUAN....................................................................................................... 3 1.1. Đại cương về các tính chất của thủy ngân ....................................................................... 3 1.1.1. Đặc tính nguyên tử và tính chất hóa lí ...................................................................... 3 1.1.2. Thủy ngân trong tự nhiên, trong sản xuất và đời sống.............................................. 4 1.2. Độc tính............................................................................................................................ 5 1.2.1. Các con đường xâm nhập vào cơ thể ........................................................................ 5 1.2.2. Tác hại đối với con người ......................................................................................... 5 1.3. Sơ lược về son môi........................................................................................................... 6 1.4. Một số phương pháp định lượng thủy ngân ..................................................................... 6 1.4.1. Phương pháp quang phổ UV-VIS ............................................................................. 6 1.4.2. Phương pháp phổ hấp thụ nguyên tử không ngọn lửa GF-AAS ............................... 7 1.4.3. Phương pháp phổ ICP – AES.................................................................................... 7 1.4.4. Phương pháp sắc ký khí (GC) ................................................................................... 8 1.4.5. Phương pháp phổ ICP – MS ..................................................................................... 8 1.4.6. Phương pháp phổ hấp thụ nguyên tử sử dụng kỹ thuật hóa hơi lạnh CV – AAS ..... 9 CHƯƠNG 2: THỰC NGHIỆM ................................................................................................ 13 2.1. Hóa chất – Dụng cụ........................................................................................................ 13 2.1.1. Hóa chất .................................................................................................................. 13 2.1.2. Trang thiết bị và dụng cụ phục vụ nghiên cứu........................................................ 13 2.2. Nội dung nghiên cứu ...................................................................................................... 14 2.2.1. Khảo sát tối ưu hóa các điều kiện đo phổ hấp thụ Hg của hệ thống CV – AAS .... 14 2.2.2. Xây dựng phương pháp định lượng thủy ngân đối với phép đo CV - AAS ........... 16 2.2.3. Tối ưu hóa quy trình xử lý mẫu son môi................................................................. 17 2.2.4. Khảo sát hệ số thu hồi của quy trình xử lý mẫu...................................................... 19 2.2.5. Phân tích định lượng mẫu son môi ......................................................................... 20 2.2.6. Phương pháp xử lý và đánh giá kết quả .................................................................. 22 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN............................................................................ 23
  8. Khóa luận tốt nghiệp Bùi Phước Hùng 3.1. Khảo sát các điều kiện đo phổ hấp thụ nguyên tử thủy ngân của hệ thống CV – AAS. 23 3.1.1. Khảo sát ảnh hưởng của tốc độ dòng khí mang và chiều cao ống chữ T bằng phương án quy hoạch thực nghiệm bậc 2 tâm xoay Box – Hunter ................................... 23 3.1.2. Khảo sát ảnh hưởng của nồng độ chất khử NaBH4 và axit HCl bằng phương án quy hoạch thực nghiệm tâm xoay bậc 2 Box – Hunter ............................................................ 27 3.1.3. Khảo sát sự ảnh hưởng của độ rộng khe đo ............................................................ 30 3.2. Xây dựng phương pháp định lượng thủy ngân đối với phép đo CV – AAS.................. 31 3.2.1. Khảo sát xác định khoảng tuyến tính của thủy ngân .............................................. 31 3.2.2. Xây dựng đường chuẩn Hg ..................................................................................... 32 3.2.3. Xác định giới hạn phát hiện (LOD), giới hạn định lượng (LOQ) của Hg .............. 34 3.2.4. Khảo sát độ lặp của phép đo ................................................................................... 35 3.3. Tối ưu hóa quy trình xử lý mẫu son môi........................................................................ 36 3.3.1. Khảo sát ảnh hưởng của HClO 4 đến quy trình xử lý mẫu. ..................................... 36 3.3.2. Khảo sát ảnh hưởng của dung dịch KMnO 4 25 g.L-1 ............................................. 37 3.3.3. Khảo sát ảnh hưởng của thể tích NH2 OH.HCl 50 g.L-1 .......................................... 38 3.3.4. Khảo sát thể tích axit HNO 3 đặc cho quy trình xử lý mẫu...................................... 39 3.3.5. Khảo sát mức nhiệt độ cho quy trình xử lý mẫu ..................................................... 40 3.3.6. Khảo sát thời gian cho quy trình xử lý mẫu ............................................................ 41 3.3.7. Quy hoạch thực nghiệm bậc 2 các yếu tố ảnh hưởng đến tín hiệu độ hấp thụ ....... 42 3.3.8. Tổng kết điều kiện xử lí mẫu .................................................................................. 46 3.3.9. Khảo sát hệ số thu hồi của quy trình xử lý mẫu...................................................... 46 3.3.10. Kết quả phân tích các mẫu son môi ...................................................................... 47 CHƯƠNG 4: KẾT LUẬN – ĐỀ NGHỊ .................................................................................... 50 4.1. Kết luận .......................................................................................................................... 50 4.2. Đề nghị ........................................................................................................................... 51 TÀI LIỆU THAM KHẢO......................................................................................................... 53 PHỤ LỤC.................................................................................................................................. 57
  9. Khóa luận tốt nghiệp Bùi Phước Hùng MỞ ĐẦU Ngày nay, nhu cầu thẩm mỹ ngày càng tăng do đó kéo theo sự phát triển của ngành mỹ phẩm trên toàn thế giới. Các mặt hàng mỹ phẩm ngày càng trở nên đa dạng, đáp ứng mọi nhu cầu của người sử dụng. Một số loại mỹ phẩm được sử dụng hàng ngày có thể kể đến như: kem dưỡng da, nước hoa, kem chống nắng, son môi… Các loại mỹ phẩm này được sử dụng trực tiếp trên cơ thể người nên nó phải đảm bảo những yêu cầu khắt khe về thành phần sao cho không gây ảnh hưởng đến sức khỏe của người sử dụng. Trong nhiều năm gần đây đã có rất nhiều các hãng mỹ phẩm nổi tiếng đến Việt Nam để kinh doanh các dòng sản phẩm chăm sóc sắc đẹp của họ. Nhờ đó mà người sử dụng được tiếp xúc với các mặt hàng chính hãng và chất lượng tốt. Tuy nhiên, vấn đề hàng nhái, nhập lậu vẫn là thách thức với các cơ quan chức năng để bảo vệ quyền lợi người tiêu dùng. Những loại hàng nhái này không chỉ gây thiệt hại về kinh tế mà còn có thể gây ra những ảnh hưởng nghiêm trọng đến sức khỏe con người. Mỹ phẩm thường là hỗn hợp gồm nhiều chất để bôi hay thoa lên các bộ phận bên ngoài cơ thể hay toàn bộ cơ thể. Nếu các hợp chất trong mỹ phẩm không phù hợp với cơ địa của người sử dụng có thể gây ảnh hưởng đến sức khỏe người dùng. Mỹ phẩm chứa các chất độc hại có thể thấm qua da hoặc đường tiêu hóa tích tụ lại trong cơ thể người, gây ra những hậu quả nghiêm trong đến người sử dụng. Trong quá trình sản xuất, để giảm giá thành hoặc do nguồn nguyên liệu không tính khiết mà người ta sử dụng các chất cấm, độc hại để sản xuất mỹ phẩm.[20] Trong số các chất độc hại được kiểm định và quản lý chặt chẽ về hàm lượng là các kim loại nặng như Hg, Pb, As, Cd. Sự nhiễm độc các kim loại nặng có thể gây ra các ảnh hưởng lâu dài đến sức khỏe thậm chí gây tử vong. Đối với thủy ngân, thường gây ra các rối loạn thần kinh như run tay, run chân, mất trí nhớ, rối loạn về nói. Nếu nhiễm độc cấp tính do nuốt phải một lượng lớn thủy ngân có thể gây ra đau dạ dày, buồn nôn, nôn mữa, trường hợp nặng có thể tử vong.[2] Có nhiều phương pháp xác định hàm lượng vết thủy ngân đã được công bố như: phương pháp quang phổ UV – VIS, phương pháp phổ ICP – AES, phương pháp ICP – MS, sắc ký khí GC, phương pháp phổ hấp thụ nguyên tử không ngọn lửa GF – AAS hay phổ hấp thụ nguyên tử sử dụng kỹ thuật hóa hơi lạnh CV – AAS. Trong đó phương pháp CV – AAS cho độ nhạy và độ chọn lọc cao [8], phù hợp với trang thiết bị phòng thí nghiệm của khoa Hóa học trường Đại học Sư phạm thành phố Hồ Chí Minh.
  10. Khóa luận tốt nghiệp Bùi Phước Hùng Do đó, việc xác định hàm lượng thủy ngân trong mỹ phẩm là vô cùng cần thiết. Xuất phát từ yêu cầu thực tế đó, nhằm góp phần vào công tác kiểm định chất lượng mỹ phẩm, chúng tôi thực hiện đề tài “Nghiên cứu quy trình xác định hàm lượng thủy ngân trong một số loại son môi bằng phương pháp phổ hấp thụ nguyên tử sử dụng kỹ thuật hóa hơi lạnh”. 2
  11. Khóa luận tốt nghiệp Bùi Phước Hùng CHƯƠNG 1: TỔNG QUAN 1.1. Đại cương về các tính chất của thủy ngân 1.1.1. Đặc tính nguyên tử và tính chất hóa lí Thủy ngân (ký hiệu Hg) là nguyên tố hóa học thuộc ô 80, nhóm IIB, chu kì 6 trong bảng tuần hoàn các nguyên tố hóa học. Bảng 1.1. Một số hằng số lý hóa của thủy ngân [9],[13],[26] Cấu hình electron [Xe] 4f14 5d10 6s2 Nguyên tử khối 200,59 Năng lượng ion hóa, eV I1 10,43 I2 18,75 I3 32,43 Màu sắc Trắng bạc Nhiệt độ nóng chảy -38,83 oC Nhiệt độ sôi 356,73 oC Khối lượng riêng 13,456 g.cm-3 Thế điện cực chuẩn Hg2+/Hg + 0,85 V Thủy ngân là một kim loại nặng, tồn tại dạng chất lỏng ở nhiệt độ thường, có màu trắng bạc nhưng trong không khí ẩm, bị bao phủ bởi màng oxit nên mất ánh kim. Hơi thủy ngân hầu như hoàn toàn gồm những phân tử đơn nguyên tử như các khí hiếm. Ở 25 oC áp suất hơi bão hòa của thủy ngân là 1,9.10 -3 mmHg.[5] Thủy ngân là kim loại hoạt động kém, thủy ngân chỉ tan trong axit có tính oxi hóa như H2SO4 đặc, HNO3 và không phản ứng với các axit loãng như HCl, H2SO4 loãng. Thủy ngân không tác dụng với O2 ở nhiệt độ thường, ở 300 oC tạo thành HgO nhưng phân hủy lại thành Hg ở nhiệt độ cao hơn. Thủy ngân có ái lực với lưu huỳnh, có thể tác dụng với lưu huỳnh ở nhiệt độ thường. Ngoài ra, thủy ngân có thể hòa tan nhiều kim loại để tạo thành hỗn hống như[22]:  Hỗn hống Cd/Hg được sử dụng làm điện cực dương trong pin Weston.  Hỗn hống Na/Hg được sử dụng làm tác nhân khử.  Hỗn hống bạc (  50% Hg, 35% Ag, 13% Sn, 2% Cu theo khối lượng) được dùng trong nha khoa. 3
  12. Khóa luận tốt nghiệp Bùi Phước Hùng Thủy ngân nguyên tử hấp thụ các bức xạ có bước sóng 184,9 nm và 253,7 nm cho phổ hấp thụ đặc trưng. Do đó, tính chất này được ứng dụng để phân tích hàm lượng vết của thủy ngân trong mẫu bằng phương pháp AAS. 1.1.2. Thủy ngân trong tự nhiên, trong sản xuất và đời sống Thủy ngân được biết đến từ khoảng 1500 năm trước công nguyên, là một nguyên tố rất hiếm trong vỏ trái đất, trữ lượng của nó chỉ khoảng 0,08 ppm. [19] Trong tự nhiên, thủy ngân có thể tồn tại dưới dạng đơn chất lỏng, hơi trong không khí hoặc dưới dạng hợp chất vô cơ trong các quặng như cinabar (HgS), corderoite (Hg3S2 Cl2), livingstonite (HgSb4S8 ) và một số quặng khác.[14] Trong đó, cinabar là quặng phổ biến nhất. Thủy ngân có nhiều đồng vị như: 194 Hg, 196 Hg, 197 Hg, 198 Hg, 199 Hg, 200 Hg, 201 Hg, 202 Hg, 203 Hg, 204 Hg, 206 Hg.[26] Thủy ngân bị phát tán trong khí quyển qua quá trình bay hơi do chưng cất các hợp chất thủy ngân từ bề mặt trái đất. Các hoạt động sản xuất của con người là nguyên nhân chính làm tăng hàm lượng của thủy ngân trong khí quyển. Thủy ngân được thải ra từ các phân xưởng của nhà máy sản xuất thủy ngân, luyện thủy ngân từ quặng, từ các ngành sản xuất công nghiệp, xử lý hóa chất và rác thải y tế, quá trình đốt than đá, rác thải…[1] Trước đây, thủy ngân được dùng nhiều trong điều chế bạc và vàng bằng phương pháp hỗn hống hay sản xuất xút và clo bằng phương pháp điện phân dung dịch NaCl dùng cực âm thủy ngân. Tuy nhiên, do tác động xấu đến môi trường nên phương pháp này hầu như đã bị loại bỏ. Ngoài ra, thủy ngân còn được sử dụng trong các ngành chế tạo các dụng cụ nghiên cứu khoa học và dụng cụ thí nghiệm, các ngành công nghệ điện, điện tử như chế tạo các đèn hơi thủy ngân, các máy nắn và ngắt dòng. Bên cạnh đó, thủy ngân có vai trò quan trọng với khả năng tạo hỗn hống, có ứng dụng rộng rãi trong nha khoa, chế tạo ắc quy,…[5] Thủy ngân được sử dụng trong một số thuốc như Hg2Cl2 có trong thuốc lợi tiểu, thuốc sát trùng, HgCl 2 trong các thuốc chữa giang mai, thuốc khử trùng…[26] Các hoạt động sản xuất này hằng năm thải vào đất, nước và sau đó xuất hiện trong không khí một lượng lớn thủy ngân gây ra những tác động xấu đến các loài sinh vật và đặc biệt là con người. 4
  13. Khóa luận tốt nghiệp Bùi Phước Hùng 1.2. Độc tính[2] 1.2.1. Các con đường xâm nhập vào cơ thể Thủy ngân có thể xâm nhập vào cơ thể người qua đường hô hấp do thủy ngân kim loại dễ bay hơi ở nhiệt độ thường. Một m3 không khí bão hõa hơi thủy ngân ở 20 oC chứa khoảng 15 mg thủy ngân, cao hơn mức cho phép 1500 lần. Hơi thủy ngân hít vào được hấp thu vào phổi, từ đó xâm nhập vào não gây rối loạn thần kinh. Thủy ngân cũng có thể được hấp thụ qua da, tuy nhiên kém hơn đường hô hấp. Mặt khác chất độc thủy ngân bám trên da có thể đi vào cơ thể qua miệng. Khi tay trần tiếp xúc với thủy ngân trên da sẽ còn lại oxit thủy ngân rất nhỏ và mịn mà mắt thường không thể nhìn thấy được, từ đó chất độc có thể đi vào cơ thể qua miệng. Thủy ngân có thể nhiễm qua miệng do ăn phải thức ăn có nhiễm thủy ngân. Cá là loại thực phẩm có hàm lượng thủy ngân tương đối cao, tùy thuộc vào môi trường sống của chúng. Do đó, thủy ngân được tích lũy trong cơ thể người đến một lượng nhất định sẽ gây ra các dấu hiệu nhiễm độc rõ rệt. 1.2.2. Tác hại đối với con người Thủy ngân và các hợp chất của thủy ngân đều độc. 1.2.2.1. Thủy ngân kim loại Hg là một chất độc đối với tế bào, tác dụng của nó rất phức tạp, Hg gây thoái hóa tổ chức, tạo thành các hợp chất protein rất dễ tan làm tê liệt chức năng của các nhóm thiol (-SH), các hệ thống men cơ bản và oxi hóa – khử của tế bào. Hít thở không khí có nồng độ Hg 1mg.m-3 trong thời gian dài có thể bị nhiễm độc (từ 1 – 3 mg.m-3 có thể gây viêm phổi cấp). Tiếp xúc lâu dài với nồng độ Hg 0,1 mg.m-3 có nguy cơ nhiễm độc với triệu chứng cổ điển như run… Hg ở nồng độ thấp từ 0,06 – 1 mg.m-3 gây ra các triệu chứng mất ngủ, ăn kém ngon. 1.2.2.2. Thủy ngân (II) clorua Là hợp chất vô cơ của Hg thường gặp, có độc tính rất cao, theo Douris, độc tính của thủy ngân (II) clorua qua đường miệng như sau: - Từ 1 gam trở lên, một lần: gây nhiễm độc siêu cấp tính, tử vong nhanh. - Từ 150 – 200 mg, một lần: gây nhiễm độc cấp tính, thường tử vong. - Từ 0,5 – 1,4 gam, trong 24 giờ: gây nhiễm độc mãn tính. 5
  14. Khóa luận tốt nghiệp Bùi Phước Hùng - 0,007 mg, trong 24 giờ: có thể gây nhiễm độc cho những người kém sức chịu đựng. 1.2.2.3. Thủy ngân [Hg(CN) 2] xianua Thủy ngân xianua là chất rất độc. Một người khỏe mạnh cho uống 0,13g Hg(CN) 2 có thể chết sau 9 ngày, với các triệu chứng nhiễm độc thủy ngân. 1.2.2.4. Các hợp chất thủy ngân hữu cơ Chúng thường gây ra các rối loạn tiêu hóa, thận và thần kinh, dễ dàng đi qua màng tế bào sinh học, cư trú trong các mô mỡ. 1.3. Sơ lược về son môi [32] Son môi là sản phẩm được xếp vào nhóm mỹ phẩm dùng trên da. Chúng được dùng cho vùng môi nhằm mục đích bào vệ, giữ ẩm, làm đẹp của phái nữ. Son môi hiện nay rất đa dạng về chủng loại như dạng rắn, dạng lỏng, dạng kem. Son môi là hỗn hợp khan của chất béo, dầu và sáp. Thành phần cơ bản của son môi có thể chia ra thành các nhóm sau: 1. Dầu lỏng: dầu khoáng, dầu thầu dầu… 2. Các chất dẻo: petrolatum, lanolin,… 3. Các chất rắn: ceresin, sáp ong,… 4. Sáp có nhiệt độ nóng chảy cao: sáp carnauba,.. Son môi ngày càng trở nên phổ biến với nhiều độ tuổi của phái nữ, việc sử dụng thường xuyên và lâu dài, đặc biệt son môi có thể xâm nhập cơ thể qua đường ăn uống nên nguy cơ tích lũy thủy ngân có trong son cao hơn hẳn so với các loại mỹ phẩm dùng trên da khác. Do đó, việc xác định và kiểm tra giới hạn thủy ngân trong các loại son môi là vô cùng cần thiết. Theo quy định của cục quản lý Dược Việt Nam, giới hạn thủy ngân trong mỹ phẩm không được vượt quá 1 ppm.[3] 1.4. Một số phương pháp định lượng thủy ngân 1.4.1. Phương pháp quang phổ UV-VIS Phương pháp sử dụng thuốc thử dithizon tạo thành phức màu vàng da cam ở pH từ 1,5 – 2. Phức thủy ngân dithizonat tan trong dung môi CHCl 3 và có hấp thụ cực đại ở bước sóng 490 nm. Ưu điểm của phương pháp này là dễ thực hiện, đơn giản tuy nhiên có độ nhạy kém và độ chọn lọc không cao. Một số kim loại với hàm lượng cao có thể gây cản trở trong quá trình phân tích.[11] 6
  15. Khóa luận tốt nghiệp Bùi Phước Hùng Năm 2010, Lê Thị Mùi đã ứng dụng phương pháp UV-VIS để xác định tổng thủy ngân trong một số nguồn nước bề mặt và nước ngầm ở Đà Nẵng. Điều kiện tối ưu của phương pháp là sử dụng 10 ml dithizon, thời gian chiết 2 phút, loại trừ ảnh hưởng của Ag+ và Cu2+ lần lượt bằng H2Y2- và KSCN. Kết quả cho thấy, giới hạn phát hiện (LOD) của Hg2+ là 10 -6 ppm, khoảng nồng độ tuyến tính của thủy ngân là 10 -6  0,3 ppm.[10] Năm 2015, K. Prasertboonyai cùng các cộng sự đã sử dụng phương pháp quang phổ UV-VIS xác định hàm lượng thủy ngân trong một số loại mỹ phẩm và các loại thuốc truyền thống của Thái Lan. Khoảng tuyến tính khảo sát được từ 0,05  1,50 μg.mL−1 , LOD là 0,03 μg.mL−1 và LOQ là 0,14 μg.mL−1 .[30] 1.4.2. Phương pháp phổ hấp thụ nguyên tử không ngọn lửa GF-AAS Phương pháp này có độ nhạy cao, có khi cao gấp hàng trăm đến hàng nghìn lần phép đo trong ngọn lửa. Do đó, trong phân tích hàm lượng vết các kim loại trong nhiều trường hợp không cần thiết phải làm giàu sơ bộ các nguyên tố cần xác định.[8] Năm 2009, Jeremy T. Madden và Neil Fitzgerald đã sử dụng phương pháp hóa hơi thủy ngân trong dung dịch mẫu bằng chiếu xạ tia cực tím. Hơi thủy ngân sinh ra được bẫy lại trong lò graphite tráng bằng paladi (Pd), phương pháp này cải thiện đáng kể giới hạn phát hiện so với các nghiên cứu được công bố trước đó. Giới hạn phát hiện của phương pháp này là 0,12 μg.L−1 , phương trình đường chuẩn thu được là y = 0,0698x + 0,0209 ( r 2 = 0,9938).[25] Năm 2011, Rennan G.O. Araujo cùng các cộng sự đã nghiên cứu về khả năng xác định hàm lượng thủy ngân trong hạt bay bằng phương pháp phân tích trực tiếp mẫu rắn bằng phổ hấp thụ nguyên tử sử dụng kỹ thuật nguyên tử hóa bằng lò graphite dòng liên tục có độ phân giải cao (SS-HR-CS GF AAS). Giới hạn phát hiện là 40 ng.g-1 tương ứng với 0,12 ng.m-3 không khí. Kết quả phân tích thu được hàm lượng thủy ngân trong hạt bay nằm trong khoảng từ
  16. Khóa luận tốt nghiệp Bùi Phước Hùng suất cao. Độ nhạy của phương pháp này khá cao, có LOD cỡ 0,1 ppb và có vùng tuyến tính rộng.[8] Năm 2005, Fengxiang. X. Han cùng cộng sự đã xác định hàm lượng thủy ngân trong đất và thực vật bằng phương pháp ICP – AES. LOD của phương pháp thu được từ nghiên cứu này là 5 μg.L−1 và LOD là 17 μg.L−1 . Kết quả phân tích của phương pháp ICP – AES lần lượt bằng 92,2 % và 90,5 % lượng thủy ngân tìm được bằng các phương pháp CV – AAS và ICP – MS trên cùng mẫu đất và thực vật.[21] 1.4.4. Phương pháp sắc ký khí (GC) Sắc ký khí là phương pháp sắc ký được sử dụng phổ biến trong hóa phân tích để tách và phân tích các hợp chất bay hơi. Năm 2005, Juan Jose Berzas Nevado đã áp dụng phương pháp CGC – pyro – AFS để phân tích hàm lượng thủy ngân trên mẫu chuẩn DORM – 2 và DOLT – 3. Hàm lượng thủy ngân vô cơ và metyl thủy ngân tìm được gần với giá trị thực của mẫu chuẩn. Hiệu suất thu hồi trên mẫu chuẩn DORM – 2 đối với thủy ngân vô cơ và monometyl thủy ngân đều từ 92% - 105%.[28] Năm 2011, Stephen Wai-cheung Chung đã ghép sắc ký khí với phổ khối nguyên tử nguồn plasma cao tần cảm ứng (GC – ICP/MS) để xác định đồng thời MeHg và EtHg trong thực phẩm. Kết quả phân tích Hg trong MeHg trên các mẫu chuẩn NIST SRM 1947, SRM 1566b, NRC Tort-2 lần lượt là 223 ± 10, 13,7 ± 0,7 và 152 ± 13 μg Hg.kg−1 , kết quả này gần với giá trị thực của các mẫu chuẩn. Giới hạn phát hiện của phương pháp cho MeHg và EtHg là 0,3 μg Hg.kg−1, độ thu hồi MeHg và EtHg trên các mẫu thực phẩm khác nhau từ 87% - 117%.[17] 1.4.5. Phương pháp phổ ICP – MS Phổ khối lượng có bản chất khối, có tính chọn lọc, độ nhạy cao. Ngày nay, phương pháp ICP – MS đang được ứng dụng trong nhiều lĩnh vực, đặc biệt trong phân tích hàm lượng vết các kim loại nặng độc hại như As, Hg, Pb,… Năm 1999, David E. Nixon đã so sánh phương pháp ICP – MS với CV – AAS qua xác định hàm lượng thủy ngân trong máu và nước tiểu. Qua phân tích cho thấy hai phương pháp có tương quan tốt và kết quả có sai khác không đáng kể. Với LOD là 0,15 μg.L-1 và hàm lượng thủy ngân tìm được trong các mẫu nước tiểu từ 15 – 150 μg/mẫu cho thấy ICP – MS là phương pháp có thể sử dụng để phân tích hàm lượng vết của thủy ngân.[29] Năm 2012, Heidi Pyhtilä đã phát triển và tối ưu hóa phương pháp xác định lượng vết thủy ngân trong nước chứa mùn tự nhiên bằng kỹ thuật CV – ICP – MS. Các yếu tố 8
  17. Khóa luận tốt nghiệp Bùi Phước Hùng tối ưu hóa được xác định nhờ sử dụng phần mềm quy hoạch thực nghiệm như tốc độ khí mang (0,86 L.min-1) và năng lượng nguồn cao tần RF (1250 W), lượng chất oxi hóa thêm vào vừa đủ để oxi hóa các hợp chất hữu cơ trong mẫu. Do đó giới hạn phát hiện rất thấp là 0,7 ng.L-1 .[31] Năm 2013, Ying Gao đã hạn chế được sự mất mát chất phân tích và sự nhiễm bẩn bằng việc hòa tan mẫu mỹ phẩm trực tiếp bằng axit fomic, nguyên tử hóa bằng đèn UV rồi dẫn vào hệ thống đo phổ ICP – MS. Nhờ đó mà giới hạn phát hiện được rất thấp 0,6 pg.mL-1 , hàm lượng thủy ngân trong một số mỹ phẩm phân tích được như kem dưỡng da (0,95 ± 0,1 ng), kem làm sáng da (1,15 ± 0,05 ng), … với hiệu suất thu hồi từ 90 % - 105 %.[20] 1.4.6. Phương pháp phổ hấp thụ nguyên tử sử dụng kỹ thuật hóa hơi lạnh CV – AAS[8] 1.4.6.1. Nguyên tắc của phương pháp AAS Phương pháp phân tích dựa trên cơ sở đo phổ hấp thụ nguyên tử của một nguyên tố được gọi là phép đo phổ hấp thụ nguyên tử (phép đo AAS). Cơ sở của phép đo này là sự hấp thụ năng lượng (bức xạ đơn sắc) của nguyên tử tự do ở trạng thái hơi (khí) khi chiếu chùm tia bức xạ đơn sắc qua đám hơi của nguyên tố ấy trong môi trường hấp thụ. Vì thế muốn thực hiện được phép đo phổ hấp thụ nguyên tử của một nguyên tố cần thực hiện các quá trình sau: 1. Chọn các điều kiện và một loại trang bị phù hợp để chuyển mẫu phân tích từ trạng thái ban đầu (rắn hay dung dịch) thành trạng thái hơi của các nguyên tử tự do. Quá trình đó được gọi là quá trình hóa hơi và nguyên tử hóa mẫu. Những trang bị để thực hiện quá trình này được gọi là hệ thống nguyên tử hóa mẫu. 2. Chiếu chùm tia sáng bức xạ đặc trưng của nguyên tố cần phân tích qua đám hơi nguyên tử, các nguyên tử tự do trong đám hơi đó sẽ hấp thụ những tia bức xạ nhất định và tạo ra phổ hấp thụ của nó. Phần cường độ của chùm tia sáng đã bị nguyên tử hấp thụ phụ thuộc vào nồng độ của nó trong môi trường hấp thụ. Nguồn cung cấp chùm tia sáng phát xạ đơn sắc là các đèn catot rỗng (HCL) hay đèn không điện cực (EDL). 3. Tiếp đó, nhờ một hệ thống máy quang phổ người ta thu toàn bộ chùm sáng phân ly và chọn một vạch phổ hấp thụ của nguyên tố cần nghiên cứu để đo cường độ của nó. Cường độ đó chính là tín hiệu hấp thụ của vạch phổ hấp thụ nguyên tử. Trong 9
  18. Khóa luận tốt nghiệp Bùi Phước Hùng một giới hạn nhất định của nồng độ C, giá trị cường độ này là phụ thuộc tuyến tính vào nồng độ C của nguyên tố ở trong mẫu phân tích theo công thức: A  a.LCb Trong đó: - A  là cường độ vạch hấp thụ - a là hằng số thực nghiệm - C là nồng độ nguyên tố phân tích có trong dung dịch mẫu - L là bề dày của môi trường hấp thụ mà chùm sáng đi qua - b là hằng số bản chất ( 0  b  1 )  Ưu điểm Phương pháp AAS có một số ưu điểm sau: - Phép đo phổ hấp thụ nguyên tử có độ nhạy và độ chọn lọc tương đối cao. Khoảng 65 nguyên tố hóa học có thể được xác định bằng phương pháp này với độ nhạy từ 0,05 – 1 ppm - Không phải làm giàu nguyên tố cần xác định trước khi phân tích, do đó tiết kiệm mẫu, thời gian và hóa chất tinh khiết. - Xử lý kết quả nhanh chóng, thao tác đơn giản. Thiết bị cho phép xác định đồng thời hay liên tiếp nhiều nguyên tố trong một mẫu một cách tự động.  Nhược điểm Bên cạnh những ưu điểm, phép đo AAS cũng có một số nhược điểm sau: - Hệ thống máy AAS tương đối đắt tiền nên một số cơ sở nhỏ không đủ điều kiện để trang bị. - Yêu cầu môi trường làm việc không có bụi, sự nhiễm bẩn có ảnh hưởng rất lớn đến kết quả phân tích. - Phương pháp phân tích này chỉ cho biết thành phần nguyên tố trong mẫu phân tích mà không chỉ ra trạng thái liên kết của nguyên tố trong mẫu. 1.4.6.2. Kỹ thuật hóa hơi lạnh  Nguyên tắc Trong những điều kiện nhất định một số nguyên tố có khả năng phản ứng với hiđro mới sinh hay chất khử mạnh trong môi trường axit sinh ra hợp chất hiđrua ở trạng thái khí, hợp chất này dễ bị phân hủy thành các nguyên tử tự do có khả năng hấp thụ 10
  19. Khóa luận tốt nghiệp Bùi Phước Hùng quang sinh ra phổ hấp thụ. Đối thủy ngân, hợp chất hiđrua của chúng có nhiệt độ phân hủy thấp khoảng 20 o C do đó HgH2 có thể phân hủy ở ngay nhiệt độ phòng. Để tạo hợp chất hiđrua thủy ngân, trong đề tài này chúng tôi sử dụng tác nhân khử NaBH4, quá trình phản ứng xảy ra theo phương trình: Hg 2  4BH 4  2H   2B2 H 6  2H 2  HgH 2  HgH2(k)  Hg(k)  H2(k) Hợp chất hiđrua sinh ra được dẫn vào cuvet để đo phổ bằng dòng khí trơ argon.  Đặc điểm của kỹ thuật hóa hơi lạnh Kỹ thuật hóa hơi lạnh có độ nhạy và độ chọn lọc cao, đối với Hg giới hạn phát hiện khoảng 0,2 ppb. Bên cạnh đó, do tách được chất phân tích ra khỏi nền của mẫu nên loại trừ được nhiều yếu tố ảnh hưởng. Kỹ thuật này có thể sử dụng cho hầu hết các đối tượng mẫu và chi phí hóa chất cần thiết không cao.  Một số công trình nghiên cứu xác định thủy ngân bằng phương pháp CV – AAS Năm 2012, Robson M. de Jesus cùng các cộng sự đã xác định hàm lượng thủy ngân trong các loại phân lân bằng phường pháp CV – AAS. Mẫu phân được xử lý bằng hỗn hợp dung dịch lantan clorua, axit clohiđric và thioure, sau đó cho tác dụng với NaBH4 để tạo hơi thủy ngân. LOD và LOQ lần lượt là 2,4 và 8,2 μg.kg-1, thủy ngân tìm được trong các mẫu phân lân từ 33,97 đến 209,28 μg.kg-1 [23] Năm 2013, tác giả Lê Thị Hường Hoa đã thực hiện luận án “Ngiên cứu xây dựng quy trình phát hiện và xác định hàm lượng một số chất bị cấm sử dụng trong mỹ phẩm”. Trong nghiên cứu này, tác giả đã xác định thủy ngân bằng phổ hấp thụ nguyên tử với kết quả thu được phương trình hồi qui là: y = 1,779x + 6,185 với hệ số tương quan r = 0,9987, LOD = 150 ppb và LOQ = 500 ppb.[6] Năm 2013, Valfredo Azevedo Lemos và các cộng sự đã sử dụng phương pháp chiết pha rắn làm giàu thủy ngân để xác định hàm lượng thủy ngân trong cá, các loài có vỏ và nước bọt bằng CV – AAS. LOD và LOQ lần lượt là 0,011 và 0,038 μg.L-1 , hàm lượng thủy ngân xác định được trong nước bọt từ 0,055 – 0,200 μg.L-1 , trong một số loài thủy sản ở vịnh Todos os Santos (Brazil) như cá vược 0,169 – 0,195 μg.g-1 , cá đối 0,043 – 0,361 μg.L-1 , tôm 0,075 – 0,374 μg.L-1 , con trai 0,206 – 0,397 μg.L-1 .[24] Năm 2017, Atefeh Nasrollahpour đã ứng dụng phương pháp vi chiết pha rắn để tách và làm giàu Hg(II) trong mẫu nước thiên nhiên. Phương pháp này sử dụng chất hấp 11
nguon tai.lieu . vn