Xem mẫu

  1. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ĐỖ THỊ TRANG NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT CAO SU CSTN/GRAPHEN NANOCOMPOZIT BẰNG PHƢƠNG PHÁP LATEX KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa công nghệ - Môi trƣờng HÀ NỘI – 2018
  2. TRƢỜNG ĐẠI HỌC SƢ PHẠM HÀ NỘI 2 KHOA HÓA HỌC ĐỖ THỊ TRANG NGHIÊN CỨU CHẾ TẠO VÀ TÍNH CHẤT CAO SU CSTN/GRAPHEN NANOCOMPOZIT BẰNG PHƢƠNG PHÁP LATEX KHÓA LUẬN TỐT NGHIỆP ĐẠI HỌC Chuyên ngành: Hóa công nghệ - Môi trƣờng Ngƣời hƣớng dẫn khoa học: Lƣơng Nhƣ Hải HÀ NỘI – 2018
  3. LỜI CẢM ƠN Trong nhiều tháng học tập và nghiên cứu, với nỗ lực của bản thân và sự giúp đỡ tận tình của thầy giáo, em đã hoàn thành khóa luận tốt nghiệp của mình đúng với thời gian quy định. Trước tiên, em xin được bày tỏ lòng biết ơn sâu sắc của mình tới TS Lương Như Hải - Trung tâm Phát triển công nghệ cao - Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã tận tình hướng dẫn, giúp đỡ em trong suốt quá trình nghiên cứu, thực hiện đề tài. Nhân dịp này em xin gửi lời cảm ơn đến các thầy cô giáo trong khoa Hóa học – Trường Đại học Sư phạm Hà Nội 2 đã quan tâm, giúp đỡ, trang bị cho em những kiến thức chuyên môn cần thiết trong quá trình học tập tại trường. Cuối cùng em xin cảm ơn gia đình, bạn bè đã luôn động viên, giúp đỡ cho em hoàn thành tốt khóa luận tốt nghiệp này. Em xin chân thành cảm ơn! Hà Nội, ngày tháng 05 năm 2018 Sinh viên Đỗ Thị Trang
  4. DANH MỤC CÁC BẢNG Bảng 1.1: Thành phần chính mủ cao su thiên nhiên ......................................... 5 Bảng 1.2: Thành phần hoá học của cao su thiên nhiên ..................................... 6 Bảng 1.3: Tính chất vật lý của cao su thiên nhiên ............................................ 8 Bảng 1.4: Các thông số cơ tính của graphen và thép ...................................... 10 Bảng 1.5: Mối quan hệ giữa kích thước hạt và bề mặt riêng .......................... 14 Bảng 2.1: Thành phần cơ bản của mẫu vật liệu cao su nanocompozit ……...28 Bảng 3.1: Kết quả phân tích TGA của các mẫu vật liệu trên cơ sở cao su thiên nhiên ................................................................................................................ 41
  5. DANH MỤC CÁC HÌNH Hình 1.1: Công thức cấu tạo của cao su thiên nhiên ......................................... 7 Hình 1.2: Tấm graphen ..................................................................................... 9 Hình 1.3: Cấu trúc tinh thể của graphen ......................................................... 11 Hình 1.4: Cấu trúc vùng năng lượng của graphen đơn ................................... 11 Hình 1.5: Hình ảnh hiển vi quang học của lớp graphen đơn .......................... 11 Hình 1.6: Cấu trúc vùng năng lượng của lớp kép graphen có cấu trúc đối xứng ......................................................................................................................... 12 Hình 1.7: Cấu trúc vùng năng lượng của lớp kép graphen không đối xứng ... 12 Hình 1.8: Nguyên lý chung để chế tạo vật liệu polyme nanocompozit .......... 17 Hình 1.9: Sơ đồ chế tạo polyme/graphen nanocompozit bằng công nghệ latex ......................................................................................................................... 19 Hình 1.10: Hai mô hình có thể cho cấu trúc của bề mặt hạt latex cao su ....... 20 Hình 1.11: Mối quan hệ giữa ứng suất-sức căng của vật liệu cao su/graphen nanocompozit bằng ......................................................................................... 22 Hình 1.12: Dây chun đang được hãng Alliance Rubber nghiên cứu để sản xuất ......................................................................................................................... 23 Hình 1.13: Graphen nhàu được xếp lớp trên một tấm polyme ....................... 23 Hình 2.1: Mẫu vật liệu đo tính chất kéo của vật liệu ……..……………….. 29 Hình 3.1: Ảnh hưởng của hàm lượng GE tới độ bền kéo đứt của vật liệu…………………………………………………………………………. 32 Hình 3.2: Ảnh hưởng của hàm lượng GE tới độ giãn dài khi đứt của vật liệu33 Hình 3.3: Ảnh hưởng của hàm lượng GE tới độ cứng của vật liệu ................ 33 Hình 3.4: Cơ chế tạo mixel của chất hoạt động bề mặt trong phân tán CNT [34] .................................................................................................................. 34 Hình 3.5: Ảnh hưởng của hàm lượng CTAB tới độ bền kéo đứt của vật liệu 35
  6. Hình 3.6: Ảnh hưởng của hàm lượng CTAB tới độ giãn dài khi đứt của vật liệu ................................................................................................................... 35 Hình 3.7: Ảnh hưởng của hàm lượng CTAB tới độ cứng của vật liệu ........... 36 Hình 3.8: Ảnh FESEM mẫu CSTN/1GE ........................................................ 37 Hình 3.9: Ảnh FESEM mẫu CSTN/1GE/CTAB ............................................ 37 Hình 3.10: Ảnh FESEM mẫu CSTN/3GE/CTAB .......................................... 38 Hình 3.11: Biểu đồ TGA của mẫu CSTN ....................................................... 39 Hình 3.12: Biểu đồ TGA của mẫu CSTN/1GE............................................... 40 Hình 3.13: Biểu đồ TGA của mẫu CSTN/3GE............................................... 40
  7. DANH MỤC CHỮ VIẾT TẮT BR Cao su nitril butadien CNT Ống nano cacbon CSTN Cao su thiên nhiên CTAB Cetyl trimetyl amoni bromua EPDM Cao su Etylen propylen dien monome FESEM Kính hiển vi điện tử quét trường phát xạ GE Graphen Ghz Gigahertz GPa Gigapascal HĐBM Hoạt động bề mặt L-CSTN Latex cao su thiên nhiên NC Nanoclay PE Polyetylen Pkl Phần khối lượng PP Polypropylen TCVN Tiêu chuẩn Việt Nam TESPT Bis-(3-trietoxysilyl propyl) tetrasulphit TGA Phân tích nhiệt trọng lượng
  8. MỤC LỤC LỜI CẢM ƠN DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH DANH MỤC CHỮ VIẾT TẮT MỤC LỤC MỞ ĐẦU ....................................................................................................... 1 CHƢƠNG 1. TỔNG QUAN ........................................................................ 3 1.1. Cao su thiên nhiên ............................................................................... 3 1.1.1. Lịch sử phát triển của cao su thiên nhiên ...................................... 3 1.1.2. Mủ cao su thiên nhiên (Latex) ......................................................... 3 1.1.3. Cao su sống ..................................................................................... 5 1.1.4. Thành phần hoá học của cao su thiên nhiên ................................. 6 1.1.5. Tính chất của cao su thiên nhiên ................................................... 7 1.2. Graphen ............................................................................................... 9 1.2.1. Tính chất của graphen .................................................................... 9 1.3. Vật liệu polyme nanocompozit, cao su nanocompozit .................. 13 1.3.1. Phân loại và đặc điểm của vật liệu cao su nanocompozit .......... 15 1.3.2. Ưu điểm của vật liệu polyme nanocompozit và cao su nanocompozit .......................................................................................... 16 1.3.3. Phương pháp chế tạo .................................................................... 16 1.4. Tình hình nghiên cứu vật liệu cao su/graphen nanocompozit trong và ngoài nƣớc .................................................................................. 17 1.4.1. Các nghiên cứu trên thế giới ........................................................ 17 1.4.2. Tình hình nghiên cứu trong nước.................................................. 24 CHƢƠNG 2. NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU .......... 27 2.1. Đối tƣợng và nội dung nghiên cứu .................................................. 27 2.1.1. Đối tượng nghiên cứu ................................................................... 27
  9. 2.1.2. Nội dung nghiên cứu .................................................................... 27 2.2. Thiết bị và hóa chất ........................................................................... 27 2.3. Chế tạo mẫu........................................................................................ 28 2.4. Phƣơng pháp xác định một số tính chất cơ học của vật liệu ........ 29 2.4.1. Phương pháp xác định độ bền kéo đứt ........................................ 29 2.4.2. Phương pháp xác định độ giãn dài khi đứt ................................. 30 2.4.3. Phương pháp xác định độ cứng của vật liệu ............................... 30 2.5. Nghiên cứu độ bền nhiệt của vật liệu bằng phƣơng pháp phân tích nhiệt trọng lƣợng ............................................................................... 30 2.6. Nghiên cứu cấu trúc vật liệu bằng kính hiển vi điện tử quét trƣờng phát xạ (FESEM)....................................................................................... 31 CHƢƠNG 3 . KẾT QUẢ VÀ THẢO LUẬN ............................................ 32 3.1. Ảnh hƣởng của hàm lƣợng graphen tới tính chất cơ học của vật liệu ............................................................................................................... 32 3.2. Ảnh hƣởng của hàm lƣợng chất hoạt động bề mặt CTAB tới tính chất cơ học của vật liệu ............................................................................. 34 3.3. Nghiên cứu cấu trúc hình thái của vật liệu ...................................... 36 3.4. Nghiên cứu khả năng bền nhiệt của vật liệu.................................... 39 KẾT LUẬN VÀ KIẾN NGHỊ ................................................................... 42 TÀI LIỆU THAM KHẢO ......................................................................... 43
  10. MỞ ĐẦU Ngày nay cùng với sự phát triển của nền công nghiệp tiên tiến đã kéo theo sự phát triển không ngừng của các ngành công nghiệp phụ trợ. Khoa học và công nghệ vật liệu cũng là một đối tượng quan trọng nằm trong sự phát triển không ngừng đó. Việc nghiên cứu chế tạo và tìm kiếm các vật liệu mới đã và đang thu hút nhiều sự quan tâm của các nhà khoa học trong và ngoài nước bởi những giá trị của nó mang lại. Việt Nam là một nước xuất khẩu cao su thiên nhiên lớn, với tổng diện tích tính đến nay đạt khoảng 910.500 ha. Sản lượng cao su thiên nhiên (CSTN) ở nước ta đã có những tăng trưởng vượt bậc trong những năm qua. Đây là nguồn nguyên liệu dồi dào, giá thành rẻ và thân thiện với môi trường. Tuy nhiên, các vật liệu cao su truyền thống vẫn còn tồn tại một số nhược điểm. Do đó, việc nghiên cứu nâng cao tính năng cơ lý, kỹ thuật, mở rộng khả năng ứng dụng cho CSTN để sản xuất các sản phẩm cao su kỹ thuật phục vụ nhu cầu trong nước cũng như xuất khẩu đang là vấn đề cần được quan tâm. Để tăng khả năng ứng dụng và khắc phục những nhược điểm cho vật liệu cao su thiên nhiên, các vật liệu này thường được gia cường bằng một số chất độn gia cường như than đen, silica, clay,... [44]. Khả năng gia cường của chất độn cho cao su phụ thuộc vào kích thước hạt, hình dạng, sự phân tán và khả năng tương tác với cao su [27,28]. Các chất độn nano có kích thước từ 1-100 nm, có thể cải thiện đáng kể tính chất cơ học của vật liệu. Với diện tích bề mặt lớn, các hạt nano sẽ tương tác tốt với các đại phân tử cao su, dẫn đến nâng cao hiệu quả gia cường. Do vậy, các hạt nano rất quan trọng để gia cường cho vật liệu cao su [37]. Graphen là vật liệu có nhiều tính chất đặc biệt như dẫn nhiệt, dẫn điện tốt và tính chất cơ học rất cao (độ bền kéo khoảng 125 GPa). Các tính chất ấn tượng của graphen đã thu hút được nhiều nhà nghiên cứu trong lĩnh vực polyme nanocompozit. Graphen là chất độn nano gia cường đa năng chỉ với 1
  11. hàm lượng tương đối nhỏ (khoảng 0,1-2%). Khi phân tán trong nền polyme, graphen có thể cung cấp các tính chất mà chỉ đạt được thông qua bằng cách sử dụng kết hợp của hai hoặc nhiều chất độn, như nanoclay (tính thấm khí) và CNTs (dẫn nhiệt và điện). Tuy nhiên, một rào cản chính đối với việc sử dụng graphen để gia cường cho polyme là nó có độ hòa tan rất thấp trong hầu hết các dung môi. Hơn nữa, để khai thác các tính chất vốn có của graphen, vật liệu nên được phân tán tốt trong nền polyme. Các phương pháp phân tán graphen vào nền polyme như phương pháp dung dịch, nóng chảy và trùng hợp in-situ. Các phương pháp này đều có nhược điểm là các tấm graphen kết hợp với nhau liên tục xảy ra. Để tạo ra sự phân tán graphen tốt trong các nền polyme, cần phải giảm bớt sự tương tác Van der Waals, mà không ảnh hưởng đến bề mặt tấm graphen. Trong đó, phương pháp latex sử dụng chất hoạt động bề mặt đã hỗ trợ tốt việc phân tán graphen vào nền polyme, với phương pháp này sẽ tạo thành các đơn lớp graphen rời rạc. Chính vì vậy, chúng tôi chọn đề tài: Nghiên cứu chế tạo và tính chất cao su C TN graphen nanocomposit b ng phương pháp latex” làm đề tài nghiên cứu cho khóa luận của mình. 1. Mục tiêu nghiên cứu - Nâng cao tính chất cơ lý cho vật liệu cao su thiên nhiên - Đánh giá khả năng tán của graphen trong nền cao su bằng phương pháp latex. 2. Nội dung nghiên cứu - Nghiên cứu ảnh hưởng của hàm lượng graphen tới tính chất cơ học của vật liệu - Nghiên cứu ảnh hưởng của hàm lượng chất hoạt động bề mặt CTAB tới tính chất cơ học của vật liệu - Nghiên cứu cấu trúc hình thái của vật liệu CSTN/graphen nanocompozit - Nghiên cứu khả năng bền nhiệt của vật liệu CSTN/graphen nanocompozit. 2
  12. CHƢƠNG 1. TỔNG QUAN 1.1. Cao su thiên nhiên 1.1.1. Lịch sử phát triển của cao su thiên nhiên Cao su thiên nhiên (CSTN) được loài người phát hiện và sử dụng đầu tiên vào nửa cuối thế kỉ XVI tại Nam Mỹ. Vào thời gian này, những thổ dân ở đây chỉ biết trích nhựa cây cao su để tẩm vào sợi làm giầy, dép đi rừng. Những sản phẩm đầu tiên này có thời gian sử dụng lâu hơn những sản phẩm thông thường, tuy vậy nó vẫn còn nhiều nhược điểm là độ bền chưa thực ổn định và hay dính gây ra các cảm giác khó chịu, do đó CSTN chưa được sử dụng rộng rãi. Đến năm 1839 khi các nhà khoa học Guder và Gencoc phát minh được quá trình lưu hóa CSTN, chuyển cao su từ trạng thái chảy nhớt sang trạng thái đàn hồi cao, bền vững từ đó CSTN mới được ứng dụng rộng rãi, sản xuất ra nhiều sản phẩm thông dụng. Đến đầu thế kỉ XX cùng với sự phát triển của ngành hóa học và đặc biệt là sự ra đời của thuyết cấu tạo polyme thì CSTN đã được nghiên cứu một cách kỹ lưỡng và ứng dụng rộng rãi trong các lĩnh vực khoa học kỹ thuật và đời sống [11]. 1.1.2. Mủ cao su thiên nhiên (Latex) Mủ cao su thiên nhiên là dạng nhũ tương trong nước của các hạt cao su với hàm lượng phần khô ban đầu từ 28% - 40%. Các hạt cao su này vô cùng nhỏ bé và có hình dạng quả trứng gà, kích thước hạt vào khoảng 0,05 m đến 3m. Một gam mủ cao su với hàm lượng phần khô khoảng 40% chứa 5.10 13 hạt với đường kính trung bình khoảng 0,26 m. Tất cả các hạt này luôn năm ở trạng thái chuyển động Browner [11]. * Cấu tạo hạt Latex Hạt latex có cấu tạo từ hai lớp, lớp trong cùng là hydrocacbon, vỏ bọc bên ngoài là lớp hấp phụ làm nhiệm vụ bảo vệ latex không bị keo tụ. Thành phần hóa học chủ yếu của lớp hấp phụ là các hợp chất chứa nitơ thiên nhiên, 3
  13. protein, các chất béo và muối xà phòng của các axit béo. Các latex cao su mang điện tích âm, giá trị điện tích phụ thuộc vào nồng độ mủ cao su, trị số pH của môi trường và dao động từ -40 v đến -110 v . Khối lượng riêng của latex phụ thuộc vào nồng độ (hàm lượng phần khô) pha cao su trong nó (khối lượng riêng pha cao su là 914 kg/m3, khối lượng riêng môi trường nhũ hóa là 1020 kg/m3) [11]. * Tính chất của hạt Mủ cao su chảy từ cây cao su có kiềm tính yếu (pH=7,2). Sau vài giờ bảo quản trị số pH của mủ giảm dần từ 6,9 xuống 6,6 sau đó Latex dần bị keo tụ. Trong quá trình keo tụ pha cao su liên kết lại với nhau rồi tách dần khỏi nhũ tương nước (serum) và nổi lên bề mặt bể chứa. Hiện tượng keo tụ Latex thường do axit gây nên. Trong môi trường axit ion H+ rất linh động do có lực điện tích đã tịnh tiến đến bề mặt hạt Latex, tách đẩy lớp vỏ bảo vệ ra khỏi bề mặt lớp hidrocacbon làm pha hidrocacbon tiếp xúc lại với nhau, dính vào nhau và gây ra hiện tượng keo tụ. Hiện tượng keo tụ Latex trong quá trình bảo quản là kết quả tác dụng của ion H+ được hình thành trong quá trình ôxi hóa các loại men luôn tồn tại trong Latex. Để ngăn chặn hiện tượng keo tụ này khi khai thác mủ cao su thường sử dụng các chất ổn định pH của môi trường là amoniac 0,5% nhằm duy trì pH môi trường từ 10-11 [11]. * Thành phần của Latex Thành phần chính của mủ cao su thiên nhiên phụ thuộc vào tuổi của cây, khí hậu và thổ nhưỡng. Đối với mỗi cây cao su thì thành phần và tính chất của Latex lại phụ thuộc vào mùa thu hoạch. Tuy nhiên thành phần chính của mủ cao su thiên nhiên gồm: 4
  14. Bảng 1.1: Thành phần chính mủ cao su thiên nhiên STT Thành phần Phần trăm (%) 1 Nước 52,3  67 2 Hydrocarbon 29,5  37,3 3 Polysacarit 1,2  4,2 4 Nhựa thiên nhiên 1,0  3,4 5 Protein 1,9  2,7 6 Chất khoáng 0,2  0,4 Mủ cao su thiên nhiên chứa nhiều nước, để giảm giá thành vận chuyển và thuận tiện cho quá trình sử dụng Latex người ta thường tiến hành cô đặc. Ngày nay để cô đặc Latex người ta có thể sử dụng bốn phương pháp sau: phương pháp ly tâm; phương pháp bay hơi tự nhiên; phương pháp phân lớp và phương pháp sử dụng chất điện giải. 1.1.3. Cao su sống Cao su thiên nhiên được sản xuất từ latex chủ yếu bằng hai phương pháp: * Keo tụ mủ cao su Rửa phần keo tụ bằng nước mềm rồi sấy cao su đến độ ẩm cần thiết. Sản xuất cao su sống bằng phương pháp keo tụ cho phép nhận được sản phẩm có độ tinh khiết cao vì trong quá trình keo tụ hầu hết các hợp chất tan trong nước được giữ lại ở phần nước thải. * Cho bay hơi nước ra khỏi mủ cao su Phương pháp này cho sản phẩm cao su sống ở dạng cục chứa nhiều tạp chất cơ học và các tất cả các hợp chất tan trong nước. Trên thương trường quốc tế cao su thiên nhiên thường được trao đổi ở hai loại chính: Crep hong khói với các loại chất lượng khác nhau và crep trắng. 5
  15. 1.1.4. Thành phần hoá học của cao su thiên nhiên Thành phần hoá học của cao su thiên nhiên gồm nhiều các chất khác nhau: hydrocacbon (thành phần chủ yếu), các chất trích ly bằng axeton, độ ẩm, các chất chứa nitơ mà chủ yếu là protein và các chất khoáng. Hàm lượng các chất này cũng giống như latex dao động rất lớn phụ thuộc vào tuổi của cây, cấu tạo thổ nhưỡng cũng như khí hậu nơi cây sinh trưởng và mùa khai thác mủ. Ngoài ra nó còn phụ thuộc vào phương pháp sản xuất [11,12]. Trong bảng dưới đây là thành phần hóa học của cao su thiên nhiên (cao su sống) được sản xuất bằng các phương pháp khác nhau. Bảng 1.2: Thành phần hoá học của cao su thiên nhiên Loại cao su STT Thành phần chính (%) Hong khói Crêp trắng Bay hơi 1 Hydrocarbon 93-95 93-95 85-90 2 Chất trích ly bằng axeton 1,5-3,5 2,2-3,45 3,6-5,2 3 Các chất chứa nitơ 2,2-3,5 2,4-3,6 4,2-4,8 4 Chất tan trong nước 0,3-0,85 0,2-0,4 5,5-5,72 5 Chất khoáng 0,15-0,85 0,16-0,85 1,5-1,8 6 Độ ẩm 0,2-0,9 0,2-0,9 1,0-2,5 CSTN có công thức cấu tạo là polyisopren mà các đại phân tử của nó được tạo thành từ các mắt xích cấu tạo dạng đồng phân cis liên kết với nhau ở vị trí 1,4 (chiếm khoảng 98%). Công thức cấu tạo của CSTN được biểu thị ở hình 1.1. 6
  16. Hình 1.1: Công thức cấu tạo của cao su thiên nhiên Ngoài ra còn có khoảng 2% các mắt xích liên kết với nhau tạo thành mạch đại phân tử ở vị trí 1, 2 hoặc 3, 4. Khối lượng phân tử trung bình của CSTN khoảng 1,3.106. Mức độ dao động khối lượng phân tử của CSTN từ 10 5 – 2.106. Tính năng cơ lý, kỹ thuật của CSTN phụ thuộc nhiều vào cấu tạo hóa học cũng như khối lượng phân tử của nó. 1.1.5. Tính chất của cao su thiên nhiên * Tính chất hóa học Do cấu tạo hóa học của CSTN là một hydrocarbon không no nên nó có khả năng cộng hợp với chất khác (tuy nhiên, do khối lượng phân tử lớn nên phản ứng này không đơn giản như ở các hợp chất thấp phân tử). Mặt khác, trong phân tử nó có nhóm α-metylen có khả năng phản ứng cao nên có thể thực hiện các phản ứng thế, phản ứng đồng phân hóa, vòng hóa [13],… - Phản ứng cộng : do có liên kết đôi trong mạch đại phân tử, trong những điều kiện nhất định, CSTN có thể cộng hợp với hydro tạo sản phẩm hydrocarbon no dạng parafin, cộng halogen, cộng hợp với oxy, nitơ,… - Phản ứng đồng phân hóa, vòng hóa: do tác dụng của nhiệt, điện trường, hay một số tác nhân hóa học như H 2SO4 , phenol,… cao su có thể thực hiện phản ứng tạo hợp chất vòng. 7
  17. - Phản ứng phân hủy: Dưới tác dụng của nhiệt, tia tử ngoại hoặc của oxy, CSTN có thể bị đứt mạch, khâu mạch, tạo liên kết peroxit, carbonyl,… * Tính chất vật lý Ở nhiệt độ thấp, CSTN có cấu trúc tinh thể. CSTN kết tinh mạnh nhất ở -25oC. Dưới đây là các tính chất vật lý đặc trưng của CSTN: Bảng 1.3: Tính chất vật lý của cao su thiên nhiên STT Tính chất Thông số 1 Khối lượng riêng 913 [kg/m3] 2 Nhiệt độ thuỷ tinh hóa -70 [oC] 3 Hệ số dãn nở thể tích 656.10-4 [dm3/oC] 4 Nhiệt dẫn riêng 0,14 [W/mK] 5 Nhiệt dung riêng 1,88 [kJ/kgK] 6 Nửa chu kỳ kết tinh ở -25oC 2-4 [giờ] Hệ số thẩm thấu điện môi ở tần số 7 2,4-2,7 1000 Hz 8 Tang của góc tổn hao điện môi 1,6.10-3 Crếp trắng: 5.1012[.m] Điện trở riêng 9 Crếp hong khói : 3.1012[.m] Do đặc điểm cấu tạo, CSTN có thể phối trộn tốt với nhiều loại cao su như cao su isopren, cao su butadien, cao su butyl,.. hoặc một số loại nhựa nhiệt dẻo không phân cực như polyetylen, polypropylen,... trong máy trộn kín hay máy luyện hở. Mặt khác, CSTN có khả năng phối trộn với các loại chất độn cũng như các phụ gia sử dụng trong công nghệ cao su [12]. 8
  18. 1.2. Graphen Graphen có nguồn gốc từ graphite (than chì), nó được tách ra từ graphite. Graphen là một mạng tinh thể dạng tổ ong có kích thước nguyên tử tạo thành từ các nguyên tử cacbon 6 cạnh. Dưới kính hiển vi điện tử, graphene có hình dáng của một màng lưới có bề dày bằng bề dày của một nguyên tử cacbon, nếu xếp chồng lên nhau phải cần tới 200.000 lớp mới bằng độ dày một sợi tóc. Có thể xem graphen như thành phần cơ bản tạo nên các cấu trúc khác nhau của cacbon như fullerene, cacbon nanotube, graphite. Graphen được hình dung như là một ống nano dàn mỏng, do cùng một nguyên liệu chính là các phân tử cacbon. Về cơ bản graphen có cấu trúc 2D. Trong phòng thí nghiệm có thể tạo ra các phiến graphen có đường kính 25 μm và dày chỉ 1nm. Hình 1.2: Tấm graphen 1.2.1. Tính chất của graphen * Tính chất cơ học Graphen có cấu trúc bền vững ngay cả ở nhiệt độ bình thường. Độ cứng của graphene lớn hơn rất so với các vật liệu khác (cứng hơn cả kim cương và gấp khoảng 200 lần so với thép). Đây là nhờ các liên kết cacbon- cacbon trong graphen cũng như sự vắng mặt của bất cứ khiếm khuyết nào trong phần căng cao độ nhất của màng graphen. 9
  19. Bảng 1.4: Các thông số cơ tính của graphen và thép Vật liệu Độ cứng Young’s Độ bền kéo Modul (GPa) (GPa) Graphen 1100 125 Thép 200 0,4-0,55 * Tính chất điện và nhiệt Ở dạng tinh khiết, graphen dẫn điện nhanh hơn bất cứ chất nào khác ở nhiệt độ bình thường. Graphen có thể truyền tải điện năng tốt hơn đồng gấp 1 triệu lần. Hơn nữa, các electron đi qua graphen hầu như không gặp điện trở nên ít sinh nhiệt. Bản thân graphen cũng là chất dẫn nhiệt, cho phép nhiệt đi qua và phát tán rất nhanh. Độ dẫn nhiệt của graphen cỡ 5000 W/m.K [48]. Bên cạnh đó người ta còn quan sát được hiệu ứng Hall lượng tử của graphen ngay tại nhiệt độ phòng. * Một số tính chất khác: Graphen là vật liệu rất mỏng và gần như trong suốt với ánh sáng. 1.2.2. Phân loại graphen * Graphen đơn Graphen là một mạng tinh thể hai chiều dạng tổ ong có kích thước nguyên tử tạo thành từ các nguyên tử cacbon 6 cạnh. Mỗi nguyên tử cacbon liên kết với các nguyên tử xung quanh bằng liên kết cộng hóa trị rất chặt chẽ, tạo ra màng mỏng có cấu trúc 2D gồm các nguyên tử cacbon xếp theo các ô hình lục giác rất bền vững. Tấm graphen này chỉ dày bằng 1 nguyên tử, mang đặc tính của chất bán dẫn và kim loại. Sơ đồ cấu trúc vùng năng lượng của nó có độ rộng vùng 10
  20. Hình 1.3: Cấu trúc Hình 1.4: Cấu trúc vùng Hình 1.5: Hình ảnh tinh thể của graphen năng lượng của graphen hiển vi quang học của đơn lớp graphen đơn cấm bằng 0. Đỉnh vùng hóa trị và đáy vùng dẫn trùng nhau như hình 1.4. Graphen đơn lớp là một dạng tinh thể hai chiều của cacbon, có độ di động của electron phi thường và có các đặc điểm lạ kỳ duy nhất, khiến cho nó là vật liệu hứa hẹn đối với lĩnh vực điện tử và quang lượng tử cỡ nano. Nhưng chúng có nhược điểm, đó là không có vùng cấm, làm hạn chế việc sử dụng graphen trong lĩnh vực điện tử. Vì không có vùng cấm nên màng đơn lớp graphen không được xem là chất bán dẫn. Nếu có vùng cấm, các nhà khoa học có thể chế tạo ra các transistor hiệu ứng trường bằng graphen rất hiệu quả. * Graphen kép Gồm 2 tấm graphen đơn xếp chồng lên nhau có chiều dày bằng kích thước 2 lớp nguyên tử. Khi xếp 2 tấm graphen chồng lên nhau sẽ xảy ra hai trường hợp: 11
nguon tai.lieu . vn