Xem mẫu

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ VÕ THANH TUẤN KHÓA LUẬN TỐT NGHIỆP NGHIÊN CỨU XÁC ĐỊNH NHANH Sr-90/Y-90, ỨNG DỤNG TRONG PHÂN TÍCH MÔI TRƯỜNG VÀ Y HỌC HẠT NHÂN Chuyên ngành: Vật lý học Thành phố Hồ Chí Minh, năm 2020
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH KHOA VẬT LÝ NGHIÊN CỨU XÁC ĐỊNH NHANH Sr-90/Y-90, ỨNG DỤNG TRONG PHÂN TÍCH MÔI TRƯỜNG VÀ Y HỌC HẠT NHÂN Người thực hiện: VÕ THANH TUẤN Người hướng dẫn khoa học: PGS.TS LÊ CÔNG HẢO Thành phố Hồ Chí Minh, Năm 2020
  3. i LỜI CẢM ƠN Trong suốt quá trình học tập và thực hiện khóa luận tốt nghiệp, tôi đã được sự quan tâm, giúp đỡ nhiệt tình của các thầy cô, bạn bè tại Bộ môn Vật lý Hạt nhân trường Đại học Khoa học Tự nhiên, cũng như phòng Vật lý Hạt nhân trường Đại học Sư Phạm Thành phố Hồ Chí Minh và Trung tâm đào tạo Viện Nghiên cứu Hạt nhân Đà Lạt. Đầu tiên, tôi xin bày tỏ lời cảm ơn chân thành đến PGS.TS Lê Công Hảo, người đã tận tình hướng dẫn tôi trong thời gian thực hiện khóa luận tại Bộ môn Vật lý Hạt nhân. Tuy thời gian thực hiện khóa luận tương đối ngắn ngủi, nhưng với sự hướng dẫn tận tình của Thầy đã giúp tôi hoàn thành khóa luận này một cách tốt nhất. Kế đến, Tôi muốn bày tỏ lời cảm ơn đối với Thầy Nguyễn Minh Tuân – Phó Giám đốc Trung tâm Lò phản ứng Hạt nhân Đà Lạt và TS. Nguyễn Thị Thu - Trung tâm nghiên cứu và điều chế đồng vị phóng xạ đã quan tâm, động viên cũng như giúp đỡ tôi nghiên cứu và hoàn thiện phương pháp đếm tổng hoạt độ beta xác định nhanh tỷ số hoạt độ Sr-90/Y-90 và các tài liệu liên quan về hai đồng vị phóng xạ Sr-90 và Y-90 để tôi có thể hoàn thành khóa luận một cách tốt nhất. Tôi cũng muốn gửi lời cảm ơn sâu sắc đến thầy cô tại Viện nghiên cứu Hạt nhân Đà Lạt, đặc biệt là PGS.TS Nguyễn Xuân Hải và ThS. Phạm Quỳnh Giang đã lắng nghe và nhiệt tình giải đáp các thắc mắc cũng như hỗ trợ các thiết bị đo phóng xạ trong quá trình tôi học tập và thực hiện khóa luận tại Đà Lạt. Ngoài ra, để khóa luận được hoàn thiện như bây giờ, tôi cũng muốn gửi lời cảm ơn đến Thầy Trần Ngọc Huy và cô Nguyễn Thị Thanh Loan – giảng viên Khoa Vật lý trường Đại học Sư Phạm TPHCM đã giúp đỡ tôi về cơ sở vật chất cũng các thiết bị mà tôi còn thiếu để hoàn thành các kết quả thực nghiệm trong khóa luận. Một lần nữa, tôi xin bày tỏ lời cảm ơn chân thành đến gia đình, thầy cô, bạn bè đã luôn sát cánh, ủng hộ và động viên tôi trong suốt quá trình thực hiện và hoàn thành khóa luận tốt nghiệp. Tp. Hồ Chí Minh, Tháng 7 năm 2020 VÕ THANH TUẤN
  4. ii MỤC LỤC DANH MỤC BẢNG BIỂU ...................................................................................... v DANH MỤC CÁC HÌNH ẢNH.............................................................................. vi LỜI MỞ ĐẦU ........................................................................................................... 1 CHƯƠNG 1 TỔNG QUAN VỀ BỨC XẠ BETA – STRONTIUM VÀ YTTRIUM .................................................................................................................................... 4 1.1. Cơ sở lý thuyết về bức xạ beta ............................................................................ 4 1.1.1. Giới thiệu về phân rã beta .......................................................................... 4 1.1.2. Tính chất của phân rã beta ......................................................................... 7 1.1.3. Cân bằng năng lượng trong phân rã beta ................................................... 8 1.1.4. Phổ năng lượng của hạt beta ...................................................................... 9 1.1.5. Xác định năng lượng cực đại của phổ beta .............................................. 11 1.1.6. Thời gian bán rã suy rộng của phân rã beta ............................................. 12 1.1.7. Các quy tắc lựa chọn trong phân rã beta .................................................. 13 1.1.8. Tương tác của hạt beta với vật chất ......................................................... 16 1.2. Tổng quan về Strontium–90 (Sr-90) .................................................................. 22 1.3. Tổng quan về Yttrium–90 (Y-90) ...................................................................... 24 1.4. Kết luận chương 1.............................................................................................. 27 CHƯƠNG 2 HỆ ĐO TỔNG BETA BẰNG ỐNG ĐẾM GEIGER – MULLER .................................................................................................................................. 28 2.1. Ống đếm chứa khí Geiger – Muller ................................................................... 28 2.1.1. Nguyên tắc hoạt động .............................................................................. 28 2.1.2. Đặc trưng plateau ..................................................................................... 29 2.1.3. Thời gian chết và thời gian hồi phục ....................................................... 30
  5. iii 2.1.4. Hiệu suất ghi của đầu dò .......................................................................... 31 2.2. Các ống đếm Geiger - Muller nghiên cứu trong khóa luận ............................... 32 2.2.1. Ống đếm Geiger - Muller nghiên cứu tại Bộ môn Vật lý Hạt nhân Trường Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh. ..................................... 32 2.2.2. Ống đếm Geiger Muller tại viện nghiên cứu hạt nhân Đà Lạt................. 33 2.3. Kết luận chương 2.............................................................................................. 35 CHƯƠNG 3 CÁC PHƯƠNG PHÁP XÁC ĐỊNH Sr-90/Y-90 TRONG KHÓA LUẬN ....................................................................................................................... 36 3.1. Phương pháp đếm tổng hoạt độ beta xác định nhanh tỷ số hoạt độ Sr-90/Y-9036 3.1.1. Phương pháp ............................................................................................ 36 3.1.2. Chuẩn bị mẫu và thiết bị đo ..................................................................... 38 3.2. Phương pháp tách Sr-90 và Y-90 bằng từ trường nam châm ............................ 41 3.2.1. Phương pháp ............................................................................................ 41 3.2.2. Chuẩn bị mẫu và thiết bị đo ..................................................................... 45 3.2.3. Đo cảm ứng từ của 3 loại nam châm sử dụng trong khóa luận................ 47 3.3. Kết luận chương 3.............................................................................................. 48 CHƯƠNG 4 KẾT QUẢ VÀ THẢO LUẬN.......................................................... 49 4.1. Phương pháp đếm tổng hoạt độ beta xác định nhanh tỷ số hoạt độ Sr-90/Y-9049 4.1.1. Kết quả khảo sát vùng Plateau của hệ đo beta tổng GC 602A ................ 49 4.1.2. Kết quả phương pháp đếm tổng hoạt độ beta xác định nhanh tỷ số hoạt độ Sr-90/Y-90 ......................................................................................................... 51 4.1.3. Xử lý số liệu và kết quả ........................................................................... 53 4.1.4. Kết luận .................................................................................................... 54 4.2. Phương pháp tách Sr-90 và Y-90 bằng từ trường nam châm ............................ 55
  6. iv 4.2.1. Kết quả đo cảm ứng từ của ba loại nam châm ......................................... 55 4.2.2. Kết quả tách Sr-90 và Y-90 bằng từ trường nam châm ........................... 55 4.2.3. Xử lý số liệu và kết quả ........................................................................... 57 4.2.4. Kết luận .................................................................................................... 59 4.3. Kết luận chương 4.............................................................................................. 59 KẾT LUẬN ............................................................................................................. 60 KIẾN NGHỊ ............................................................................................................ 61 TÀI LIỆU THAM KHẢO...................................................................................... 62 PHỤ LỤC ................................................................................................................ 63
  7. v DANH MỤC BẢNG BIỂU Bảng 1.1. Phân loại các dịch chuyển ........................................................................ 16 Bảng 1.2. Độ dài bức xạ và năng lượng tới hạn đối với một số chất ....................... 21 Bảng 1.3. Đặc điểm và tính chất của Yttrium .......................................................... 25 Bảng 1.4. Tính chất hạt nhân của đồng vị Yttrium .................................................. 26 Bảng 3.1. Năng lượng cực đại của tia beta bị che chắn theo độ dày tấm nhôm....... 37 Bảng 4.1 Số liệu khảo sát vùng plateau của hệ đo tổng beta GC 602A ................... 49 Bảng 4.2. Bảng tổng hợp kết quả đo ........................................................................ 51 Bảng 4.3. Số liệu đo cảm ứng từ của ba nam châm ................................................. 55 Bảng 4.4. Số liệu đo phông môi trường ................................................................... 55 Bảng 4.5. Số liệu đo các khu vực của nam châm A (36,2  3,2 mT)........................ 56 Bảng 4.6. Số liệu đo các khu vực của nam châm B (55,4  2,2 mT) ........................ 56 Bảng 4.7. Số liệu đo các khu vực của nam châm C (80,9  3,2 mT) ........................ 57 Bảng 4.8. Hiệu suất thu nhận của Sr-90, Y-90 so với tổng Sr-90 và Y-90 ............. 58
  8. vi DANH MỤC CÁC HÌNH ẢNH Hình 1.1. Phân rã beta ................................................................................................ 4 Hình 1.2. Minh họa sơ đồ phân rã beta của 42 19 K thành 42 20 Ca ..................................... 5 Hình 1.3. Minh họa sơ đồ biến đổi của 22 11 Na thành 22 10 Ne ......................................... 6 Hình 1.4. Phổ năng lượng electron trong phân rã beta của đồng vị phóng xạ 32 P .. 10 Hình 1.5. Sự phụ thuộc cường độ electron vào bề dày lớp vật chất......................... 21 Hình 1.6. Sơ đồ phân rã của Sr–90 ........................................................................... 23 Hình 1.7. Bảng tuần hoàn các nguyên tố hóa học .................................................... 24 Hình 1.8. Sơ đồ phân rã rã Y–90 ............................................................................. 27 Hình 2.1. Cấu tạo của ống đếm Geiger – Muller ..................................................... 28 Hình 2.2. Đường đặc trưng điện tích – điện thế đối với ống đếm chứa khí ............. 29 Hình 2.3. Đặc trưng plateau của ống đếm Geiger – Muller ..................................... 30 Hình 2.4. Thời gian chết và thời gian hồi phục của ống đếm Geiger – Muller........ 31 Hình 2.5. Ống đếm Geiger - Muller tại bộ môn Vật lý hạt nhân Trường ĐH Khoa học Tự nhiên TPHCM ..................................................................................................... 32 Hình 2.6. Ống đếm Geiger - Muller tại viện nghiên cứu Hạt nhân Đà Lạt .............. 34 Hình 2.7. các nút điều khiển của máy đo beta loại GC 602A .................................. 35 Hình 3.1. Phổ tổng của nguồn Sr-90 ........................................................................ 36 Hình 3.2. Máy đo tổng hoạt độ beta tại Trung tâm đào tạo viện nghiên cứu Hạt nhân Đà Lạt ....................................................................................................................... 39 Hình 3.3. Bộ mẫu chuẩn độ dày nhôm ..................................................................... 39 Hình 3.4. Sơ đồ hệ triết tách dung dịch Y-90 ........................................................... 40 Hình 3.5. Nguồn khảo sát đã được chuẩn trực và khay đặt nguồn ........................... 40 Hình 3.6. Khay đặt vật liệu che chắn........................................................................ 40
  9. vii Hình 3.7. Ba khu vực đặt nam châm trên thanh sắt chữ U ....................................... 41 Hình 3.8. Khảo sát số đếm tại khu vực I trên thanh sắt chữ U ................................. 42 Hình 3.9. Khảo sát số đếm tại khu vực II trên thanh sắt chữ U ............................... 43 Hình 3.10. Khảo sát số đếm tại khu vực III trên thanh sắt chữ U ............................ 44 Hình 3.11. Nguồn chuẩn Sr-90 ................................................................................. 45 Hình 3.12. Ống đếm Geiger-Muller tại Bộ môn Vật lý hạt nhân ............................. 46 Hình 3.13. Ba loại nam châm sử dụng trong khóa luận ........................................... 46 Hình 3.14. Thanh sắt chữ U dùng để cố định nam châm ......................................... 47 Hình 3.15. Bố trí thí nghiệm đo cảm ứng từ của ba loại nam châm......................... 47 Hình 3.16. Xác định lực từ bằng quy tắc bàn tay trái ............................................... 48 Hình 4.1. Đồ thị phụ thuộc của số đếm theo cao thế ................................................ 50 Hình 4.2. Số xung bị chặn theo năng lượng ............................................................. 53 Hình 4.3. Phổ beta của mẫu đo ................................................................................. 53 Hình 4.4. Làm khớp các số liệu thực nghiệm ........................................................... 54
  10. 1 LỜI MỞ ĐẦU Ung thư một nhóm các bệnh phản ảnh những sự thay đổi về sinh sản, tăng trưởng và chức năng của tế bào. Các tế bào bình thường trở nên bất thường và tăng sinh không kiểm soát xâm chiếm các mô ở gần hay ở xa dẫn đến tử vong. Có thể nói, ung thư là căn bệnh thế kỷ và là mối quan tâm hàng đầu của các bệnh nhân mắc bệnh ung thư và chuyên gia nghiên cứu trong việc phát hiện và điều trị triệt để bệnh ung thư. Chúng ta đã biết “xạ trị” là hình thức phổ biến nhất hiện nay để điều trị ung thư đặc biệt là các khối u ác tính không thể tiếp cận được bằng phẫu thuật, bằng cách sử dụng các hạt hay sóng có năng lượng cao như: tia gamma, các chùm tia điện tử, proton,… để tiêu diệt các tế bào ung thư, làm ngăn chặn sự phát triển tế bào ung thư mới và tiêu diệt các tế bào ung thư cũ. Trên thế giới, đồng vị Y-90 đã được sử dụng rộng rãi trong Y học hạt nhân do đặc tính của nó với thời gian bán rã T1 2 = 64,2 giờ, phát beta với năng lượng 2,28 MeV nhưng không phát tia gamma và cuối cùng phân rã thành Zirconium-90 (Zr-90) ở trạng thái ổn định. Tuy nhiên đồng vị Y-90 là đồng vị con của đồng vị Sr-90 với thời gian bán rã T1 2 = 28,79 năm [1]. Việc phát triển phương pháp tách chiết Y-90 từ hỗn hợp Sr-90/Y-90 đã được nghiên cứu trên thế giới như: Năm 2008, Rubel Chakravarty và cộng sự đã đề xuất phương pháp tách Y-90 từ hỗn hợp Sr-90/Y-90 bằng phương pháp điện phân đơn giản và lắng đọng Y-90 ở độ pH ~ 2,5-3,0 tại nhiệt độ phòng và đạt kết quả (97 ± 2%) [1]. Năm 2009, Cơ quan Năng lượng Nguyên tử Quốc tế IAEA đã tổ chức dự án nghiên cứu kết hợp (viết tắt là CRP) về phát triển công nghệ máy phát hạt nhân để tách đồng vị phóng xạ bằng các phương pháp khác nhau [2]. Năm 2011, M.S Mansur và Amushtaq đã phát triển phương pháp tách Y-90 từ hỗn hợp Sr-90/Y-90 thông qua sự hình thành chất keo của Y-90 trong môi trường cơ bản, hỗn hợp được truyền qua bông thủy tinh cách nhiệt hoặc màng lọc, dung dịch lọc được chỉ chứa Sr-90 trong khi Y-90 được giữ lại trên tấm bông/màng lọc và
  11. 2 Y-90 được trích xuất với HCl 0,1M và độ lẫn tạp chất của Sr-90 trong Y-90 là 0,0001% [3]. Năm 2012, Rubel Chakravarty, Ashatosh Dash và MRA Pillai cũng đã tổng hợp một số phương pháp tách Y-90 từ hỗn hợp Sr-90/Y-90 bằng phương pháp chiết dung môi, phương pháp chiết xuất sắc ký, tách dựa trên màng và phương pháp tách điện hóa [4]. Như vậy, chúng ta có thể thấy tầm quan trọng của việc sử dụng đồng vị Y-90 trong y học hạt nhân cũng như trong việc tách Y-90 từ hỗn hợp Sr-90/Y-90. Hiện nay, tại Việt Nam vẫn chưa có nhiều nghiên cứu về vấn đề này, đó là lý do tôi chọn đề tài “Nghiên cứu xác định nhanh Sr-90/Y-90, ứng dụng trong phân tích môi trường và y học hạt nhân” Nội dung khóa luận bao gồm các danh mục, phụ lục và bốn chương chính, trình bày các nội dung sau: Chương 1. Tổng quan về bức xạ Beta – Strontium và Yttrium. Chương này trình bày những lý thuyết cơ bản về phân rã beta và những tương tác của bức xạ beta với vật chất. Ngoài ra, trong chương 1 cũng giới thiệu tổng quan về 2 đồng vị Strontium và Yttrium cũng như về những tính chất vật lý và hóa học của nó và ứng dụng của Yttrium trong y học hạt nhân hiện nay. Chương 2. Giới thiệu hệ đo tổng beta bằng ống đếm Geiger – Muller. Chương này giới thiệu về thông số kỹ thuật, các chức năng của hai ống đếm Geiger – Muller được sử dụng trong khóa luận tại Bộ môn Vật lý hạt nhân (ĐH KHTN) và tại Trung tâm đào tạo Viện nghiên cứu Hạt nhân Đà Lạt. Chương 3. Các phương pháp nghiên cứu. Trong chương này trình bày hai phương pháp tách Y-90 từ hỗn hợp Sr-90/Y-90 bao gồm phương pháp dùng hệ đếm tổng hoạt độ beta để xác định nhanh tỷ số hoạt độ Sr-90/Y-90 và phương pháp tách Y-90 bằng từ trường nam châm.
  12. 3 Chương 4 Kết quả và thảo luận. Trong chương này, trình bày các kết quả của hai phương pháp tách Y-90 từ hỗn hợp Sr-90/Y-90, cũng như nhận xét, đánh giá các kết quả thu được và đề xuất hương nghiên cứu tiếp theo.
  13. 4 CHƯƠNG 1 TỔNG QUAN VỀ BỨC XẠ BETA – STRONTIUM VÀ YTTRIUM 1.1. Cơ sở lý thuyết về bức xạ beta 1.1.1. Giới thiệu về phân rã beta Phân rã beta là hiện tượng biến đổi một hạt nhân này thành một hạt nhân khác có cùng khối lượng nhưng điện tích thay đổi một đơn vị kèm theo đó là phát ra một electron, một positron hay chiếm một electron của lớp vỏ nguyên tử, ta sẽ có ba loại phân rã beta là phân rã β + , phân rã β − và chiếm electron quỹ đạo [5]. Hình 1.1. Phân rã beta 1.1.1.1. Phân rã β- Hạt beta gồm 2 loại là hạt β − và β + trong đó β − được gọi là electron có khối + lượng me = 9,1091.10−31 kg và điện tích là -1e còn hạt β được gọi là positron có khối lượng bằng khối lượng hạt electron nhưng điện tích dương +1e. N Phân rã beta xảy ra khi hạt nhân phóng xạ thừa neutron, tức là tỉ số cao hơn Z đường cong bền của hạt nhân. Khi phân rã beta, hạt nhân ban đầu A Z X phát ra hạt electron và phản neutrino để chuyển thành hạt nhân A Y. Z+1 − A Z β X ⎯⎯ → Z+1 A Y + e− + v (1.1) Theo sau quá trình phân rã beta thường kèm theo sự phân rã gamma. Hình 1.2 là sơ đồ phân rã của hạt nhân 42 19 K ở trạng thái kích thích phát ra hai hạt beta để biến
  14. 5 thành hạt nhân 42 20 Ca ở trạng thái kích thích có năng lượng 1,53 MeV và trạng thái cơ bản có năng lượng là 0. Hạt nhân 42 20 Ca ở trạng thái kích thích tiếp tục phát gamma có năng lượng bằng 1,53 MeV để trở về trạng thái cơ bản Hình 1.2. Minh họa sơ đồ phân rã beta của 42 19 K thành 42 20 Ca [5] 1.1.1.2. Phân rã β + N Phân rã positron xảy ra khi hạt nhân có tỉ lệ quá thấp và không thỏa mãn về Z điều kiện năng lượng để phân rã alpha có thể xảy ra. Khi phân rã positron hạt nhân ban đầu AZ X phát ra hạt positron và hạt neutrino để chuyển thành hạt nhân A Z −1 Y. − A Z X ⎯⎯ β → Z+1 A Y + e− + v (1.2) Ví dụ về phân rã positron như sau: + 65 30 Zn ⎯⎯ β → 29 65 Cu + e + + v (1.3) + + 22 11 Na ⎯⎯ β → 22 10 Ne + e + v (1.4) Khác với electron, hạt positron không tồn tại lâu trong tự nhiên. Positron gặp electron trong nguyên tử sẽ hủy nhau tạo ra hai tia gamma và bằng năng lượng tĩnh của electron 0,511 MeV.
  15. 6 1.1.1.3. Chiếm electron quỹ đạo Một nguyên tử thiếu neutron muốn chuyển về trạng thái bền bằng cách phát hạt positron thì khối lượng của nó phải lớn hơn khối lượng hạt nhân con ít nhất 2 lần khối lượng electron. Nếu điều kiện này không thỏa mãn thì sự thiếu hụt neutron phải khắc phục bằng quá trình chiếm electron quỹ đạo, hay còn gọi là chiếm K vì quá trình chiếm electron thường xảy ra đối với electron lớp K. e − + AZ X ⎯⎯ c .e → Z-1 A X+v (1.5) Ví dụ về quá trình chiếm electron của hạt nhân 22 11 Na thành hạt nhân 22 10 Ne như sau: e − + 22 11 Na ⎯⎯→ 10 Ne + v c .e 22 (1.6) Hình 1.3. Minh họa sơ đồ biến đổi của 22 11 Na thành 22 10 Ne 22 Năng lượng liên kết của electron lớp K trong nguyên tử 11 Na là E lk = 1,08 keV . Năng lượng phản ứng bằng EQ = 3,352 MeV . Do sau quá trình chiếm electron hạt nhân phát tia gamma với năng lượng 1,277 MeV (Hình 1.3) nên phần năng lượng còn lại là 3,352 – 1,277 = 2,075 MeV là động năng của phản hạt neutrino. Hình 1.3 minh 22 22 họa sự biến đổi từ hạt nhân 11 Na thành hạt nhân 10 Ne bằng hai quá trình phân rã 22 positron và chiếm electron lớp K, với quá trình phân rã gamma tiếp theo của 10 Ne .
  16. 7 1.1.2. Tính chất của phân rã beta 1.1.2.1. Lực tương tác Quá trình phân rã beta được gây ra bởi lực tương tác yếu chứ không phải là lực hạt nhân hat lực điện từ và có cường độ nhở hơn lực hạt nhân 14 bậc. 1.1.2.2. Bản chất của quá trình phân rã Quá trình phân rã beta là quá trình phân rã bên trong hạt nucleon biến neutron thành proton (1.7) hay quá trình phân rã proton thành neutron (1.8). Như vậy nếu quá trình phân rã alpha là một quá trình phân rã thuần túy hạt nhân thì quá trình phân rã beta là một quá trình phức tạp hơn rất nhiều, liên quan đến cả lý thuyết tương tác yếu lẫn lý thuyết cấu trúc hạt nhân. − β n ⎯⎯ → p+ + e− + v (1.7) + β p ⎯⎯ → n + e+ + v (1.8) 1.1.2.3. Nguồn gốc của các hạt bay ra từ phân rã beta Một câu hỏi được đặt ra là electron, neutrino, và các hạt khác bay ra trong phân rã beta có tồn tại trong hạt nhân trước phân rã beta không? Theo quan điểm của lý thuyết hạt nhân hiện nay, các hạt này sinh ra trong quá trình phân rã do sự tương tác của các hạt cơ bản. 1.1.2.4. Dải các nguyên tố phân rã beta Đối với phân rã beta thì dải các nguyên tố phân rã rất rộng, từ hạt neutron tự do cho đến nguyên tố nặng nhất. 1.1.2.5. Năng lượng giải phóng khi phân rã beta Năng lượng giải phóng khi phân rã beta biến thiên từ 0,02 MeV trong phân rã (1.9) đến 13,4 MeV trong phân rã (1.10). − 3 1 β H ⎯⎯ → 31 He + e− + v + 0,02 MeV (1.9) − 12 5 β B ⎯⎯ → 126 C + e− + v + 13, 4 MeV (1.10)
  17. 8 1.1.3. Cân bằng năng lượng trong phân rã beta Nếu coi rằng khối lượng neutrino và phản neutrino bằng 0 thì để xảy ra quá trình phân rã beta phải thỏa mãn các điều kiện như sau: 1.1.3.1. Phân rã β - − Phân rã β phải thỏa mãn quan hệ về khối lượng sau: M ( Z,A ) > M ( Z+1,A ) + m (1.11) A Trong đó M(Z,A) là khối lượng của hạt nhân Z X và M(Z+1,A) là khối lượng A của hạt nhân Z+1 X , bỏ đi khối lượng của các electron quỹ đạo theo công thức (1.1) còn m là khối lượng electron. Tuy nhiên trong thực tế người ta không đo khối lượng hạt nhân mà đo khối lượng nguyên tử, do đó thay cho M(Z,A) và M(Z+1,A) người ta dùng các khối lượng nguyên tử trước phân rã M i và sau phân rã M r như sau: Mi = M(Z,A) + Zm và Mr = M ( Z+1,A ) + ( Z+1) m (1.12) − Khi đó điều kiện phân rã β trở thành: Mi > M r (1.13) 1.1.3.2. Phân rã β + + Đối với phân rã β thì điều kiện về khối lượng hạt nhân là: M ( Z,A ) > M ( Z − 1,A ) + m (1.14) Còn điều kiện về khối lượng nguyên tử là: Mi > M r + 2m (1.15) Trong đó: Mi = M(Z,A) + Zm và Mr = M ( Z − 1,A ) + ( Z − 1) m (1.16) 1.1.3.3. Quá trình chiếm electron Đối với quá trình chiếm electron thì điều kiện về khối lượng hạt nhân là: M ( Z,A ) + m > M ( Z − 1,A ) (1.17) Còn điều kiện về khối lượng nguyên tử là:
  18. 9 Mi > M r (1.18) Trong đó: Mi = M(Z,A) + Zm và Mr = M ( Z − 1,A ) + ( Z − 1) m (1.19) + Trong quá trình phân rã β và quá trình chiếm electron, hạt nhân cùng chịu biến đổi từ proton sang neutron. Vì vậy cả hai quá trình này có thể xảy ra với cùng một hạt nhân và thường cạnh tranh nhau. Theo các biểu thức (1.14) và (1.17) ta thấy rằng từ quan điểm cân bằng năng lượng, quá trình chiếm electron dễ xảy ra hơn so với quá + trình phân rã β . Nói riêng, nếu các hạt nhân đầu và cuối thỏa mãn bất phương trình + (1.20) thì quá trình chiếm electron được phép xảy ra còn quá trình phân rã β bị cấm. M r + 2m > Mi > M r (1.20) Ví dụ, điều kiện (1.20) đúng với quá trình chiếm electron sau đây: e − + 74 Be ⎯⎯ → 73 Li + v (1.21) Trong đó hiệu số các khối lượng nguyên tử bằng 0,864 MeV trong lúc khối lượng hai hạt electron bằng 1,02 MeV. Vậy 74 Be chỉ bắt electron mà không phân rã β+ . 1.1.4. Phổ năng lượng của hạt beta Trong phân rã beta có hai hạt bay ra là electron và phản neutrino. Do đó phân bố năng lượng trong phân rã beta không chỉ quan tâm đến năng lượng tổng cộng mà cả phân bố năng lượng giữa hai hạt bay ra đó. Ở đây ta bỏ qua năng lượng giật lùi rất bé của hạt nhân con. Do tính chất thống kê của quá trình phân rã nên sự phân chia năng lượng giữa electron và phản neutrino trong một phân rã là ngẫu nhiên và năng lượng của electron có thể có giá trị từ 0 đến năng lượng cực đại khả dĩ E max . Tuy nhiên đối với một số lớn phân rã beta thì phân bố năng lượng của electron không phải là ngẫu nhiên mà có dạng xác định. Phân bố năng lượng này gọi là phổ electron của phân rã beta. Tính chất chung của các phổ beta là phân bố trơn tru không có các đỉnh nhọn và phổ chấm dứt ở một giá trị năng lượng cực đại E max . Về mặt lịch sử, chính các tính
  19. 10 chất này của phổ beta mà vào năm 1931 Pauli đã tiên đoán được sự tồn tại của hạt neutrino trước khi quan sát được hạt này ở một phần tư thế kỷ sau đó. Nhờ sự có mặt của neutrino mà các định luật bảo toàn năng lượng, động lượng và momen động lượng trong phân rã beta được thỏa mãn. Ví dụ electron trong phân rã beta của 32 P có năng lượng cực đại E max = 1,71MeV . Đường cong phân bố động năng của electron được minh họa như hình 1.4. Ta thấy rằng năng lượng trung bình của electron trong phổ beta bằng 0,7 MeV, tức bằng 41% năng lượng cực đại. Nói chung, năng lượng trung bình của electron trong các phân rã beta bằng 30% - 40% năng lượng cực đại E max . Hình 1.4. Phổ năng lượng electron trong phân rã beta của đồng vị phóng xạ 32 P [5] Để tính dạng phổ beta, ta tính xác suất dω để khi phân rã beta, electron bay ra với động lượng p trong khoảng dp và động lượng phản neutrino k trong khoảng dk dω = Dδ ( E max − E − ck ) dpdk = Dδ ( E max − E − ck ) p 2dpk 2dkdΩ CdΩ V (1.22) Trong đó D là hệ số tỉ lệ, dΩ C và dΩ V là các góc đặc theo phương bay của electron và phản neutrino, δ ( E max − E − ck ) là hàm Dirac bảo đảm định luật bảo toàn năng lượng được thỏa mãn: E max − E − ck (1.23) Trong đó E là động năng của electron và ck là năng lượng của phản neutrino với khối lượng bằng 0. Động năng E liên hệ với động lượng electron p như sau:
  20. 11 E = c p2 +m2c2 − mc2 (1.24) Giả sử N 0 phân rã beta, trong đó dN phân rã cho hạt electron bay ra trong khoảng động lượng từ p đến p + dp và hạt phản neutrino bay ra trong khoảng động lượng từ k đến k + dk , thì dN liên hệ với dω như sau: dN = N 0dω (1.25) Hệ số D trong (1.22) đặc trưng cho cường độ tương tác yếu và phụ thuộc vào E, E max cũng như định hướng tương hỗ giữa các spin và góc giữa các động lượng electron và phản neutrino. Xét trường hợp đơn giản nhất với D = const, thì có thể lấy tích phân biểu thức (1.25) theo các giá trị động lượng phản neutrino và góc bay của electron và phản neutrino, ta có: 16π 2 N 0 dN = Dp 2 ( E max − E ) dp 2 3 (1.26) c Chuyển dp trong công thức (1.26) sang dE dựa theo (1.24) ta được hàm phân bố dạng phổ beta theo năng lượng electron như sau: = N 0 B E ( E + 2mc 2 ) ( E + mc 2 ) ( E max − E ) F ( Z,E ) dN 2 (1.27) dE 16π 2 Trong đó B = D và F ( Z,E ) là thừa số hiệu chỉnh ảnh hưởng tương tác c3 Coulomb giữa hạt nhân và các hạt bay ra. 1.1.5. Xác định năng lượng cực đại của phổ beta Ta viết lại công thức (1.26) có kể đến thừa số F ( Z,E ) hiệu chỉnh ảnh hưởng tương tác Coulomb giữa hạt nhân và các hạt bay ra như sau: N ( p ) dp = C2 p2 ( E max − E ) F ( Z,E ) dp 2 (1.28) Trong đó N ( p ) dp là số hạt beta phát ra với động lượng nằm trong khoảng p đến p + dp; C là hằng số đối với mỗi loại hạt nhân phân rã và các thông số khác đã biết ở phần trên. Từ công thức (1.28) ta có: N ( p) = C ( E max − E ) (1.29) p F ( Z,E ) 2
nguon tai.lieu . vn