Xem mẫu

  1. MỞ ĐẦU là benzen. Từ cách đây nhiều thập niên, các nhà sản xuất đã nhận ra tầm quan trọng của benzen. Các phương pháp sản xuất benzen trong công nghiệp cũng không ngừng phát triển để cung câp nguồn nguyên liệu trung gian này cho tổng hợp hữu cơ hóa dầu. Benzen có thể thu được từ một số quá trình quan trọng trong lọc hóa dầu, như quá trình reforming xúc tác, cracking xúc tác, Cracking hơi. Mặc dù trong các quá trình này, benzen chỉ là sản phẩm phụ, song sản lượng là đáng kể. Trong quá trình reforming xúc tác, với nguồn nguyên liệu naphta đã cung cấp lượng benzen và sản phẩm BTX chủ yếu. Hay quá trình Hydrodealkyl hóa trực tiếp toluen để cho sản phẩm benzen với độ chuyển hóa rất cao. Quá trình này có thể thực hiện dễ dàng nhờ xúc tác hydrodealkyl hóa toluen-HDA hay dưới tác dụng của nhiệt độ thermal hydrodealkyl of toluen-THDA. Trong đồ án này em sẽ phân tích rõ ràng về sơ đồ công nghệ, cũng như các điều kiện tối ưu. Và sau đó lựa chọn, tính toán một sơ đồ sao cho công nghệ đó không chỉ đáp ứng yêu cầu về năng suất, chất lượng benzen mà còn thỏa mãn điều kiện về kinh tế như chi phí đầu tư, giá thành sản phẩm, xây dựng…
  2. PHẦN 1: TỔNG QUAN I. Tính chất của nguyên liệu và sản phẩm 1. Nguyên liệu khí Hydro. 1.1 . Tính chất vật lý[1]. - Là phi kim, tồn tại ở dạng khí tại nhiệt độ thường, không màu, không mùi, không vị. - Là khí nhẹ nhất trong tất cả các khí, hydro nhẹ hơn không khí 15 lần. - Năng lượng liên kết H-H : 435 kJ/mol. Bảng 1 : Các đồng vị của nguyên tố hydro. Đồng vị 1 H1 2 H1 (D) 3 H1 (T) Tên Proti Dơteri Triti % 99.984 0.016 10-4 - Hydro có nhiệt độ sôi và nhiệt độ nóng chảy rất thấp Tnc = - 259,1oC Ts = - 252,6 oC - Tan ít trong nước và các dung môi hữu cơ. Một lít nước ở 0oC chỉ hòa tan 21,5 ml H2. 1.2. Tính chất hóa học - Năng lượng liên kết H-H : 435 kJ/mol → phân tử H2 rất bền đến 2000oC mới phân hủy nên H2 kém hoạt động ở điều kiện thường. - Ở nhiệt độ cao, hydro có thể phản ứng với nhiều đơn chất và hợp chất • Phản ứng với phi kim khác : halogen, oxi … H2 (k) + X2 (k) → 2 HX(k)
  3. 2 H2 (k) + O2 (k) 2 H2O (k) • Tác dụng với kim loại tạo hợp chất hydrua Ca + H2 → CaH2 • No hóa các hợp chất hữu cơ chưa no : C2H4 + H2 → C2H6 1.3. Ứng dụng của hydro. - Sản xuất các sản phẩm như phân bón, HCl, CH3OH, trong các ngành công nghiệp hóa dầu… - Tinh chế dầu mỏ ( loại bỏ S, olefin,…). - H2 cùng với O2lỏng làm nhiên liệu tên lửa. - Do nhẹ hơn không khí, hydro được bơm vào khí cầu. 1.4. Tồn chứa. - Thường hóa lỏng khí H2 ở nhiệt độ - 253 C rồi đựng o trong các thùng chứa có cách nhiệt ngoài, do cùng một khối lượng hydro thì thể tích của hydro ở trạng thái lỏng giảm 700 lần so với thể tích của nó ở trạng thái khí. - Có thể sử dụng việc nén khí H2 để vận chuyển qua đường bộ nhưng đòi hỏi xe phải có bồn lưu trữ chịu áp lực cao, đặc biệt khi khoảng cách dài. - Cuối cùng khí được dẫn tới người dùng thông qua hệ thống ống dẫn. 2. Nguyên liệu Toluen[2]. 2.1 . Tính chất vật lý. - Toluen dễ bắt cháy (do nhiệt độ chớp cháy thấp), cháy tạo ra nhiều muội. - Toluen có khả năng hòa tan trong benzene, etanol, các xeton và phần lớn dung môi hữu cơ, rất ít tan trong nước.
  4. Bảng 2: Tính chất vật lí của Toluen. Tính chất Giá trị Khối lượng phân tử (đvC) 92.14 Nhiệt độ sôi (oC) 110-111ºC Nhiệt độ đông đặc (oC) -93ºC Điểm chớp cháy (oC) 4.4ºC Tỷ trọng (g/mL) tại 25oC 0.865 Độ nhớt (N.s/m2) tại 25oC 0.56 Áp suất bão hòa (mm Hg) tại 20oC 22 Chỉ số khúc xạ tại 20oC 1.496 2.2. Tính chất hóa học. Công thức hóa học : C6H5-CH3 Công thức cấu tạo : 2.2.1. Phản ứng thế vào electrophin vào nhân thơm. - Nhóm thế CH3 là nhóm thế loại I với ảnh hưởng của hiệu ứng liên hợp và siêu liên hợp đến electron π trong vòng benzene làm mật độ e trong vòng benzene tăng lên ở các vị trí ortho và para, đồng thời làm tăng tốc độ phản ứng thế. 2.2.2. Phản ứng tại nhóm thế CH3 - Phản ứng halogen hóa: C6H5-CH3 + Cl2 → C6H5 - CH2 – Cl - Phản ứng oxi hóa với các điều kiện thích hợp : C6H5-CH3 + O2 → C6H5-CHO
  5. hoặc C6H5-CH3 + O2 → C6H5-COOH 2.3. Ứng dụng . - Trong công nghiệp và đời sống thì toluene đóng một vai trò quan trọng: + Là thành phần cấu từ làm tăng trị số octan, nâng cao giá trị của xăng, đặc biệt trong hoàn cảnh hiện nay khi phụ gia chì đã gần như không còn sử dụng do làm ô nhiễm môi trường thì tầm quan trọng của toluene ngyaf càng lớn. + Bên cạnh đó toluen còn là nguyên liệu chính sản xuất thuốc nổ TNT, ứng dụng trong các lĩnh vực quốc phòng, xây dựng, khai thác quặng … + Trong công nghiệp hóa chất, toluene đa phần sử dụng để sản xuất benzene, ngoài ra còn sự dụng làm dung môi, sản xuất sơn. 3. Sản phẩm benzene. 3.1. Công thức, cấu trúc phân tử theo Kukule. - Công thức phân tử : C6H6 - Năm 1865, Kekule đưa ra cấu trúc của phân tử benzene tương đối hợp lí ở thời điêm hiện tại :
  6. - Tuy nhiên, hiện nay bằng phương pháp phân tích rơnghen, người ta nhận thấy rằng tất cả liên kết C-C đều có giá trị bằng nhau và bằng 139 pm. Như vậy, nếu theo cấu trúc của Kekule, phải có 3 liên kết dài và 3 liên kết ngắn là chưa hợp lí. Vì vậy, theo quan điểm hiện đại thì benzen có cấu tạo vòng 6 cạnh phẳng. Các nguyên tử cacbon trong vòng đều ở trạng thái lai hóa sp2. Mỗi nguyên tử cacbon còn một electron p chưa lai hóa. Sáu electron p của 6 nguyên tử cacbon xen phủ bên tạo ra đám mây electron p phân bố đều trên cả 6 nguyên tử cacbon của vòng. - Như vậy để viết công thức cấu tạo của benzene, ta có thể sử dụng một trong 3 công thức sau : với công thức thứ 3 là hợp lí nhất.
  7. 3.2. Tính chất vật lý[3]. Bảng 3: Các tính chất vật lý của benzen : Nhiệt độ nóng chảy 5,533 oC Nhiệt độ sôi 80,1 oC Khối lượng riêng ở 25 oC(10) 879 kg/m3 Độ nhớt ở 20 oC(92) 0,649.10-3 N.s/m2 Nhiệt độ chớp cháy –11,1 oC Độ hoà tan trong nước ở 25oC 0.18g/100g H2O 3.3. Tính chất hóa học[2]. Do cấu trúc đặc trưng của benzen nên phản ứng đặc trưng của nó là phản ứng thế electrophin, còn phản ứng cộng và oxi hóa đòi hỏi điều kiện phản ứng rất khắc nghiệt. - Phản ứng cộng : Benzen + H2 → Xyclohexan Điều kiện : - xúc tác : Ni; - Áp suất : 200 – 300 atm; - Nhiệt độ : 300oC . - Phản ứng thế : + Nitro hóa : + Halogen hóa :
  8. + Alkyl hóa benzene : + Phản ứng sunfo hóa : 3.4. Các ứng dụng của benzene. - Benzen có vai trò quan trọng trong thực tế , là nguyên liệu chính để sản xuất các loại thuốc trừ sâu , thuốc kháng sinh , chất kich thich tăng trưởng và vô số các ứng dụng khác trong đời sống. - Benzen là nguồn nguyên liệu quan trọng trong công nghiệp phẩm nhuộm anilin, dược phẩm, trong việc sản xuất chất phụ để nâng cao chỉ số octan đối với nhiên liệu động cơ ôtô và máy bay. - Trong phòng thí nghiệm, benzen được sử dụng rộng rãi làm dung môi. 3.5. Lưu trữ và vận chuyển benzen[4]. + Lưu trữ : Benzen là một hóa chất độc hại và có khả năng gây bệnh ung thư cho con người. Vấn đề tồn trữ benzen đúng phương pháp là hoàn toàn cần thiết để đảm bảo rằng công nhân
  9. nhà máy và người dân sống ở các khu vực xung quanh không được tiếp xúc trực tiếp với các hoá chất độc hại. Ngoài ra điều đó cũng là cần thiết để giảm nguy hiểm cháy gây ra bởi benzene. - Duy trì nhiệt độ bồn chứa trên 8oC để ngăn chặn benzen tự đóng băng, bằng cách sử dụng miếng đệm sưởi nếu thể tích nhỏ hoặc cuộn dây sử dụng hơi với thể tích lớn cùng với các vật liệu cách nhiệt. - Bồn chứa phải kín, thường xuyên kiểm tra tránh hiện tượng rò rỉ. - Sử dụng các cột thu lôi để tránh hiện tượng sét đánh gây cháy nổ. - Mọi hoạt động tiếp xúc của con người phải có trang bị lao động theo yêu cầu. - Nghiêm cấm các hành động có thể gây cháy nổ quanh khu vực bồn chứa. + Vận chuyển : - Các tàu, xe chở có bể chứa phải được dọn sạch sẽ trước khi tải để tránh làm nhiễm bẩn nguồn nguyên liệu. - Trong quá trình tải benzene sẽ sinh ra điện tích trên các bề mặt đường ống, bồn chứa nên phải có bộ phận nối đất phân phối điện tĩnh để tránh gây cháy nổ, đồng thời khống chế lưu lượng trong đường ống đảm bảo an toàn. - Có hệ thống chữa cháy hoạt động đi kèm trong quá trình vận chuyển.
  10. II. Các phương pháp sản xuất benzen[5]. 1. Phương pháp hydrodealkyl hóa toluen. Hydrodealkyl hóa là phản ứng cracking hydrocacbon thơm có mạch nhánh trong dòng hydro. Giống như hydrocracking, phản ứng này tiêu thụ hydro và thuận lợi ở điều kiện áp suất riêng phần hydro cao. Quá trình này được thiết kế để hydrodealkyl hóa các metylbenzen, etylbenzen C9+ thành benzen. Nó xuất phát từ nhu cầu benzen trong công nghệ tổng hợp hóa dầu lớn hơn nhiều so với các hợp chất này cũng như với toluen và các xylen (sản phẩm BTX). Sau khi phân tách benzen khỏi sản phẩm reforming, các hydrocacbon thơm cao hơn sẽ được đến phân xưởng hydrodealkyl hóa. Thiết bị phản ứng có dạng tương tự hydrocracking. Tại đây, phân nhánh alkyl sẽ được bẻ gãy và đồng thời được hydro hóa. Dealkyl hóa các hợp chất dạng vòng benzene thế nhiều sẽ làm tăng lượng hydro tiêu thụ và đồng thời tạo ra nhiều sản phẩm khí hơn. Dưới đây là 1 số ví dụ: Trong quá trình hydrodealkyl hóa, phản ứng cơ bản là tách các nhóm alkyl gắn với nhân benzen ra dưới dạng alkan. Nếu quá trình vận hành đúng, và chuyển hóa được hoàn toàn nhờ tuần hoàn phần hydrocacbon thơm chưa phản ứng, các sản phẩm thu được là benzen và rất nhiều các hydrocacbon nhẹ, chủ yếu là metan. Bất kỳ loại nào không phải hydrocacbon thơm có
  11. trong nguyên liệu, ví dụ trong phần xử lí trực tiếp phân đoạn xăng C5+ không qua giai đoạn chiết dung môi, sẽ bị phân hủy thành các parafin nhẹ (metan). Điều này nhằm mục đích thu sản phẩm benzen có độ tinh khiết cao, nhưng cũng kéo theo lượng hydro tiêu thụ rất lớn. Các hợp chất lưu huỳnh chuyển hóa một phần thành H2S. 2. Nhiệt động học của phản ứng. Nhìn chung, các phản ứng liên quan đến quá trình này đều tỏa nhiệt mạnh (ví dụ hydrocracking ΔH= -190 ÷ -230 kJ/mol), ngoại trừ phản ứng tạo ra hydrocacbon thơm khối lượng phân tử lớn thu nhiệt nhẹ, và phản ứng phân hủy metan thành C và H. Các phản ứng này xảy ra ở nhiệt độ cao 650oC và tùy từng trường hợp, có thể thuận lợi khi tăng áp suất (phản ứng hydro hóa) hoặc không (phản ứng phân hủy, tạo cốc). Áp suất tối ưu cho quá trình là 5 ÷ 6 MPa. 3. Các công nghệ hydrodealkyl hóa. Các quá trình hydrodealkyl hóa hiện nay có thể chia làm 2 loại : - Hydrodealkyl hóa nhiệt (Thermal hydrodealkylation – THDA). - Hydrodealkyl hóa có xúc tác ( Hydrodealkylation – HDA). 3.1. Quá trình hydrodealkyl hóa có xúc tác. Hiện nay, với quá trình hydrodealkyl hóa có xúc tác, các nhà máy đang sử dụng chủ yếu các công nghệ của Shell, UOP, Houdry và BASF. 3.1.1. Xúc tác.
  12. - Xúc tác sử dụng được tổng hợp từ dưới dạng tinh thể (hạt) bằng nhiều phương pháp khác nhau như phương pháp ngâm tẩm, phương pháp kết tủa… Thường sử dụng chất mang là nhôm – silic oxit với các tâm xúc tác là các đơn phân tử hoặc có sự kết hợp giữa các phân tử kim loại nhóm B ví dụ như Fe, Co, Ni, Pd, Pt, Ir, Rh, Cu…, ngoài ra còn một số ít các oxit. - Do có mặt xúc tác nên điều kiện phản ứng không khó khăn như hydrodealkyl nhờ tác dụng của nhiệt độ. 3.1.2. Điều kiện phản ứng. + Các điều kiện phản ứng (tùy từng công nghệ với mỗi xúc tác của công ty mà có sự khác nhau) : - Nhiệt độ : 520 – 620 oC. - Áp suất : 5 – 30 bar. - Tỉ lệ hydro / toluene = 3-8. - Vận tốc dòng : 3-8 thể tích toluen với 1 thể tích xúc tác/1h. 3.1.3. Hiệu suất. Qua thí nghiệm phản ứng hydrodeakylation với các điều kiện: - Thời gian : 24h - Xúc tác : sử dụng chất mang là hỗn hợp MgO – Al2O3 - Nhiệt độ : 600oC - Áp suất : 3MPa. Bảng 4: Độ chuyển hóa và độ chọn lọc trong phản ứng có xúc tác[6]
  13. Tâm xúc tác Độ chuyển hóa(%) Độ chọn lọc(%) 0.5% Rh 75 98 0.1% Rh 7 99 0.15% Rh + 0.1% Pd 56 100 4% NiO 35 20 3.2. Quá trình Hydrodealkyl hóa nhiệt[5]. - Với các quá trình hydrodealkyl hóa nhiệt, các công ty chính đã phát triển và thương mại hóa công nghệ này là Atlantic Richfield và Hydrocacbon Researche Inc, Mitsubishi và Chioda, Gulf Oil… - Điều kiện làm việc : - Về cơ bản, điều kiện vận hành công nghệ này như sau: • Nhiệt độ dòng vào thiết bị phản ứng 620oC nhiệt độ tối đa 730 ÷ 750 oC • Áp suất 4,3 MPa • Thời gian lưu trung bình 25 ÷ 30 giây • Tỷ lệ mol H2/hydrocacbon trong dòng vào thiết bị là 4 • Độ chuyển hóa 75% • Độ tinh khiết tối thiểu của dòng hydro là 50 ÷60%. Sản phẩm benzen có độ tinh khiết rất cao, và hiệu suất quá trình đạt tới 98%, độ chuyển hóa cũng đạt tới 80%. 4. Một số công nghệ điển hình của quá trình hydrodealkyl hóa toluene.
  14. Ngoại trừ sự khác biệt về điều kiện phản ứng, cả 2 loại quá trình này đều vận hành theo cùng 1 sơ đồ nguyên lí chung. Tùy thuộc nguyên liệu, công nghệ có thể chỉ bao gồm một sơ đồ đơn giản hoặc có thêm một bộ phận xử lý phân đoạn xăng nhiệt phân C5+ với mục đích loại bỏ các diolefin, các hợp chất lưu huỳnh bền vững, các hợp chất nito và oxy…bằng quá trình hydro hóa chọn lọc. 4.1. Công nghệ UOP[7]. - Sử dụng quá trình thermal hydrodealkyl (THDA) - Trong phân xưởng sản xuất, dòng toluene được trộn với dòng toluene tái sinh. Sau đó, dòng được trộn cùng với dòng H2 đưa vào thiết bị gia nhiệt rồi được chuyển đến thiết bị phản ứng. Phản ứng hydrodealkyl diễn ra tạo thành benzene và các sản phẩm phụ. Dòng ra từ thiết bị được đem đi làm lạnh, chuyển đến thiết bị phân tách sản phẩm, tại đó dòng phân thành pha lỏng và pha khí. Pha khí giàu hydro được tái sinh để quay lại thiết bị phản ứng. Còn dòng chất lỏng được đưa vào thiết bị cất để tách các sản phẩm nhẹ. Dòng sản phẩm đáy tháp cất được đưa ra thiết bị xử lý bằng đất sét để cất phân đoạn, tại đây benzene tinh khiết được thu ở đoạn trên của cột cất. Phân toluene không phản ứng được đưa về tái sinh, hồi lưu và nhập vào dòng nguyên liệu ban đầu. Các sản phẩm phụ nặng nằm ở cuối cột phân đoạn.
  15. Hình 1 : Sơ đồ công nghệ hydroadealkyl hóa của UOP Chú thích : H Thiết bị gia nhiệt ST Tinh cất R Thiết bị phản ứng CT Tháp đất sét S Thiết bị phân tách F Tháp cất 4.2. Công nghệ hydrodealkyl hóa DETOL, LITOL và PYROTOL[8]. - Các quá trình DETOL, LITOL và PYROTOL sử dụng phương pháp hydrodealkyl hóa được sử dụng để chuyển hoá các hợp chất thơm thành benzen độ tinh khiết cao, được thiết kế cho các nguyên liệu cụ thể khác nhau tùy theo yêu cầu. - Các công nghệ này đã phục vụ tại hơn ba mươi dự án,và được cấp giấy phép độc quyền trên toàn thế giới. 4.2.1. Nguyên liệu
  16. Bảng 5 : Nguồn nguyên liệu cho các phương pháp DETOL, LITOL và PYROTOL DETOL LITOL PYROTOL Chuyển hoá các alkyl Chuyển hoá các sản Chuyển hoá phân aromic trong khoảng phẩm phụ từ C6 đến đoạn từ C6 đến C9 từ C7 đến C10. C9 từ than luyện cốc. của chất lỏng nhiệt Cũng chuyển hoá các Chủ yếu là quá trình phân thu được như hợp chất thơm C9- đề sunfo hoá và một một sản phẩm phụ C10 thành hợp chất lượng nhỏ hơn là của quá trình sản thơm C8. quá trình hyđrodealkyl xuất ethylen. So với hoá và hyđro cracking quá trình LITOL, của các hợp chất thêm các phản ứng không thơm. hydrocracking của phi hydrocacbon thơm, nhưng phản ứng desulfur ít hơn,phản ứng hydrodealkyl thì tương đương. 4.2.2. Đặc trưng & ưu điểm của các công nghệ. Đặc điểm Lợi ích Độ chọn lọc cao của hợp Tỷ lệ sản phẩm cao hơn với chât thơm ( Benzen ) cùng một nguyên liệu
  17. Xử lý từng bước đơn lẻ - Loại bỏ yêu cầu cần thiết cho các bước xử lý bằng hyđro riêng biệt, để giảm hàm lượng olefin hoặc lưu huỳnh trong nguyên liệu. - Giảm chi phí. Nhiệt độ hoạt động thấp - Tiết kiệm chi phí vật liệu chịu nhiệt của thiết bị. Không luyện cốc trong hệ - Chi phí bảo trì Thấp thống trao đổi nhiệt - Loại bỏ các chất thơm bão hòa rắn, chất thải vật liệu Sản phẩm tinh khiết cao - Giá trị sản phẩm Cao nhất vượt quá 99,93% 4.2.3. Hiệu suất. Bảng 6 : Khối lượng nguyên liệu và sản phẩm mỗi phương pháp Nguyên liệu Sản phẩm DETOL KL(MT) DETOL KL(MT) Toluene (98% tinh 1000 Benzene (99.95% tinh 835 khiết) khiết) Thành phần Hydrogen 36 Nhiên liệu khí 201 (70% tinh khiết) LITOL LITOL Dầu nhẹ Benzene (99.95% tinh 925 khiết)
  18. (96% BTX, 1.7% 1000 Nhiên liệu khí và dầu 128 Styrene, 0.4%Sulfur) Thành phần Hydrogen 53 (90% tinh khiết) PYROTOL PYROTOL Xăng nhiệt phân Benzene (99.95% tinh 695 khiết) 73% BTX, 3.1% 1000 Nhiên liệu khí và dầu 374 Styrene, 0.1% Sulfur Thành phần Hydrogen 69 (90% tinh khiết) 4.2.4. Sơ đồ công nghệ. - Công nghệ này, nhìn chung cũng không khác so với công nghệ chung. Trong các công đoạn phản ứng, hấp thụ thì có sử dụng 2 tháp nối liên tiếp nhau để quá trình diễn ra triệt để hơn. Sản phẩm ra khỏi lò phản ứng có độ chọn lọc cao hơn, do phản ứng xảy ra hoàn toàn. Còn sản phẩm tách được hấp thụ tốt hơn, benzene có độ tinh khiết cao. Sản phẩm đáy của tháp chưng là các hydrocacbon thơm nặng thì được tuần hoàn trở lại nguyên liệu đầu để tăng khả năng chuyển hóa của nguyên liệu. Các cải tiến trên đây là thế mạnh của các công nghệ này đã giúp cho quá trình sản xuất
  19. đạt được ưu điểm vượt trội so với các công nghệ khác. - Tuy nhiên nhược điểm lại là quá nhiều thiết bị, dẫn dến chi phí đầu tư phân xưởng, bảo trì cao. Ngoài ra, thời gian phản ứng quá lâu (2 lò phản ứng), nếu không tính toán kỹ, sẽ đồng thời gia tăng phản ứng phụ, cốc và có thể kéo hiệu xuất của cả quá trình xuống. III. Một số phương pháp sản xuất Benzen khác. Hiện nay, trước các yêu cầu về chất lượng cũng như giá thành sản phẩm, các nhà sản xuất liên tục đưa ra các công nghệ sản xuất mới nhằm tăng năng suất, hạ giá thành sản phẩm, tận dụng các nguồn nguyên liệu sẵn có, phổ biến. Dưới đây sẽ trình bày một số phương pháp sản xuất benzene khác đang được áp dụng. Với việc phân tích các điều kiện công nghệ
nguon tai.lieu . vn