Xem mẫu

The art of explaining 2 How would you explain ‘communication’ or ‘irrational’ to a seven-year-old child? 3 In your own subject, choose a concept or topic that is difficult to explain. 4 Look back over this chapter, and use it to prepare two alternative explana- tions of this topic or concept. References and further reading Black, P. and Wiliam, D. (1999) ‘Inside the black box’, download from www.pdkintl. org Black, P. et al. (2003) Assessment for Learning: Putting into Practice, Maidenhead: Open University Press. Brown, G. and Atkins, M. (1988) Effective Teaching in Higher Education, London: Routledge. Brown, G. and Hatton, N. (1982) Explanations and Explaining: A Teaching Skills Workbook, Basingstoke: Macmillan Education. Kerry, T. (1982) Effective Questioning, London: Macmillan. Marzano, R. J. et al. (2001) Classroom Instruction that Works: Research-Based Strate-gies for Increasing Student Achievement, Alexandria, VA: ASCD. Petty, G. (2006) Evidence Based Teaching, Cheltenham: Nelson Thornes. 181 13 The art of showing Demonstrating physical and intellectual skills Perhaps the most natural way to learn is by imitation. This, after all, is how children learn to speak their first language – and the method is almost 100% successful! How can teachers make use of this method of learning? If we accept that a demonstration is ‘showing how’ by example, then it is clear that this method can be employed by a teacher of any subject. As we saw in Chapter 3, it can be used to teach physical (psychomotor) skills, such as how to fillet a fish or weld mild steel; but it can also be used for intellectual skills – such as how to use Pythagoras’ theorem, how to write an appreciation of a poem or how to analyse critically a theory in sociology. Most demonstrations will of course be followed by an opportunity for student practice. This chapter considers the demonstration of physical and intellectual skills separately. Demonstrating a physical skill or ability Learning teachers are often terrified of demonstrations; they remember the science teachers whose experiments never worked and expect a similar humiliation. But there is nothing to fear if you have practised in advance. The aim of most demonstrations is to provide students with a concrete example of good practice to copy or adapt. This provides the ‘doing-detail’ that, as Chapter 3 showed, is so vital for learning physical and intellectual skills: it shows how the task is carried out, what the task achieves, to what standard it should be carried out, the indicators that the task has been carried out successfully, and so on. ‘Doing-detail’ can occasionally be provided by an exemplar (i.e. a model of good practice); for example, a typing teacher can show students a well-laid-out table of figures, and a catering teacher can show a well-presented dish. Examples of bad practice can also be useful. ‘Here are two business letters; they each have four layout mistakes in them. See if you can find them!’ Science teachers sometimes demonstrate a phenomenon by experiment. The intention here may not be to encourage the learner to imitate the teacher; indeed, that might be dangerous. These demonstrations should be carried out in much the same way as is described below. 182 The art of showing Preparation Make sure the students are ready: have they been introduced to the necessary background information, and do they know what the demonstration achieves? If the demonstration is likely to be long and involved, can it be broken down into parts to be learned separately? It is nearly always necessary to move students for a demonstration, but even then, will the whole class be able to see? If not, it would be better to break it down into smaller groups. Will you let students arrange their own positions, or will you direct them? Whatever you decide, get them as close as is practicable. Some teachers who often do demonstrations have a routine position for students around the demonstration bench – for example, the students from the front row on the teacher’s right, the second row to the left, and so on. This avoids students jostling for position. If you are in a science laboratory, decide in advance whether some students will be allowed to sit on top of the bench immediately in front of the demonstration bench. If this is allowed, arrange for the front-row students to sit in front of that bench, rather than in their usual places behind it, to avoid the other students sitting on their folders, etc. Student placement for a demonstration in a science laboratory Will there be a mirror-image problem? Students will see your left hand on their right. This is not normally a difficulty unless you expect students to copy while you are demonstrating, as some keep-fit or dance teachers do. If this is the case, demon-strate the movements in mirror image so that students see you as they would see themselves in a mirror – see the illustration overleaf. (Are you left-handed, or are any of your students left-handed, and if so will this make any difference?) How will you involve your students? This can be done by asking questions, but a student can also be asked to copy or adapt your demonstration in front of the rest of the class, before the general student practice session. In science experiments, students can be asked to take readings. 183 The teacher’s toolkit Always practise a demonstration before doing it in front of the class, and make a note of all the equipment you need, including any extras you may need to repeat the demonstration if this is necessary. Can you talk and work at the same time? Does the demonstration take longer than you expected? If so, you may need to use the Blue Peter trick: ‘Here’s one I prepared earlier.’ The demonstrator as a mirror image It is important to decide in advance on the key points you want to make during the demonstration; these can often get lost in the welter of detail. Have a summary ready for the board or overhead projector. Finally, are you certain that you have considered all the safety factors carefully? Execution Arrange the equipment in advance, well away from any confusing clutter, so that it is facing the students if at all possible. Once students are aware of what they are about to see, and why, move them into their new positions. Don’t start until they are all settled. Explain as you demonstrate if you can, preferably using questions. ‘What should I do next?’ ‘Why am I doing it like this?’ ‘What should I be careful of here?’ ‘What would happen if … ?’ Make sure your students understand the purpose of each action; they should understand the ‘why’ as well as the ‘how’. Emphasise your key points carefully. Do it slowly, and if necessary do it at a more realistic speed later. If there is more than one method and you wish to demonstrate them all, it is usually better to show only one at a time. Show the other method(s) in a separate demonstration 184 The art of showing if necessary. It is very difficult to demonstrate, talk, question and use eye contact with the group at the same time – but try; if you can do it, this will increase the impact of the demonstration enormously. Now you need some feedback. Have they learned what you have taught them? Do they understand the how, the what and the why of the technique? To discover this, repeat the demonstration, but ask your students to ‘talk you through one’. Follow their instructions, asking them questions as they tell you what to do. ‘What for?’ ‘Why must I do that first?’ and so on. Without this feedback step, there is a grave danger that any student practice which follows will be badly done, and not understood. If necessary, repeat the demonstration a number of times, until you are sure that they understand. If students are about to have a go themselves, ask them to look out for particular points which will show whether or not they are doing it properly. These ‘performance indicators’ are important: here’s a woodwork teacher finish-ing off a demonstration on planing wood. … You should hardly need to push at all; the shavings should be so thin that you can see light through them; and there should be no score marks left by the plane. This is important ‘doing-detail’, because it helps students to check and correct their own work. If you make a mistake, laugh it off and, if possible, make a teaching point out of it. ‘You see how important it is to do it slowly! You will have more time, so I will expect a better job from you!’ For long or complex demonstrations, consider giving students a demonstration observation sheet where they record relevant details, describe the technique, record what they have learned and record what they must remember when they do it themselves. Learning by imitation or ‘modelling’ takes place even when you don’t intend it. It is well known that students take more notice of what teachers do than what they say. If you tell your students to turn off the power pack before changing their circuit, or to wash their hands, or to be courteous to patients – then do so yourself. If you want your students to employ safe practice, to lay out work tidily or to be thorough or enthusiastic, you must do the same! Think carefully what a teacher in your subject area needs to model, and make sure you set a good example. Some techniques you might like to try are: The silent demonstration. Here the teacher explains that the coming demonstra-tion will be without explanation, and asks the students to watch carefully, as they will later be asked exactly what was done, and why. This can often create intense student concentration, especially if some aspect of the technique is unexpected or puzzling. The ‘how not to do it’ demonstration. We can certainly learn from deliberate mistakes, but be careful that your students do not become confused, or learn the wrong technique. The students are of course asked to watch out for the mistakes. If safety is involved, this technique should be avoided. With humour, this method can be most effective, a good example being the John Cleese videos showing how 185 ... - tailieumienphi.vn
nguon tai.lieu . vn