Xem mẫu

  1. BỘ XÂY DỰNG TRƯỜNG ĐẠI HỌC XÂY DỰNG MIỀN TRUNG Bùi Lý Vĩ NGHIÊN CỨU ỨNG DỤNG TRO BAY THAY THẾ MỘT PHẦN XI MĂNG TRONG BÊ TÔNG ĐỂ SỬ DỤNG CHO DẦM BÊ TÔNG CỐT THÉP LUẬN VĂN THẠC SĨ KỸ THUẬT XÂY DỰNG Phú Yên, tháng 2 năm 2021
  2. BỘ XÂY DỰNG TRƯỜNG ĐẠI HỌC XÂY DỰNG MIỀN TRUNG Bùi Lý Vĩ NGHIÊN CỨU ỨNG DỤNG TRO BAY THAY THẾ MỘT PHẦN XI MĂNG TRONG BÊ TÔNG ĐỂ SỬ DỤNG CHO DẦM BÊ TÔNG CỐT THÉP MÃ SỐ: 8.58.02.01 LUẬN VĂN THẠC SĨ ĐỊNH HƯỚNG ỨNG DỤNG CÁN BỘ HƯỚNG DẪN 2 Th.s Huỳnh Quốc Hùng Phú Yên, tháng 2 năm 2021
  3. LỜI CAM ĐOAN Tác giả xin cam đoan đề tài “Nghiên cứu ứng dụng tro bay thay thế một phần xi măng trong bê tông để sử dụng cho dầm Bê tông cốt thép” là do tôi thực hiện dưới sự hướng dẫn của PGS.TS Nguyễn Thị Hiền Lương - Thạc sĩ Huỳnh Quốc Hùng. Tôi cam đoan sự trung thực và nguồn gốc đề tài chưa được công bố. Tuy Hòa, ngày……tháng 02 năm 2021 Học viên Bùi Lý Vĩ
  4. LỜI CẢM ƠN Tác giả đã hoàn thành sau 2 năm học tập nghiên cứu chuyên sâu lĩnh vực kỹ thuật xây dựng với sự giảng dạy truyền đạt kiến thức và sự nhiệt tình giúp đỡ nguồn tài liệu mới trong suốt quá trình của khóa học. Để tỏ lòng biết ơn tác giả xin gửi lời cảm ơn đến Lãnh đạo Nhà trường, Khoa xây dựng và Phòng Đào tạo Trường Đại học Xây dựng Miền Trung. Để có kết quả ngày hôm nay, cùng với sự cố gắng nổ lực của bản thân là sự giúp đỡ, động viên của các thầy cô, bạn bè, đồng nghiệp và gia đình trong suốt quá trình học tập cũng như thực hiện luận văn. Đặc biệt, tác giả xin trân trọng cảm ơn PGS.TS. Nguyễn Thị Hiền Lương - Thạc sĩ Huỳnh Quốc Hùng đã đồng hành, hướng dẫn và luôn tạo mọi điều kiện thuận lợi nhất để hoàn thiện đề tài nghiên cứu khoa học. Luận văn được hoàn thành nhưng không thể tránh khỏi những thiếu sót và hạn chế. Rất mong nhận được sự đóng góp của quý thầy cô, bạn bè và đồng nghiệp để luận văn được hoàn thiện hơn. Xin chân thành cảm ơn! Tuy Hòa, ngày …tháng 02 năm 2021 Học viên Bùi Lý Vĩ
  5. MỤC LỤC DANH MỤC CÁC KÝ HIỆU VIẾT TẮT ........................................................ i DANH MỤC BẢNG BIỂU ............................................................................. iii DANH MỤC HÌNH VẼ ................................................................................... iv LỜI MỞ ĐẦU ................................................................................................... 1 1. Lý do chọn đề tài ....................................................................................... 1 2. Mục đích nghiên cứu ................................................................................. 3 3. Mục tiêu nghiên cứu .................................................................................. 3 4. Đối tượng và phạm vi nghiên cứu ............................................................. 4 4.1. Đối tượng nghiên cứu ......................................................................... 4 4.2. Phạm vi nghiên cứu ............................................................................ 4 CHƯƠNG 1: TỔNG QUAN VỀ TRO BAY VÀ DẦM BTCT ....................... 5 1.1. Tổng quan về tro bay .............................................................................. 5 1.1.1. Tổng quan về tro bay. ...................................................................... 5 1.1.3. Chỉ tiêu chất lượng tro bay dùng cho bê tông ................................. 7 1.1.4. Thành phần chính trong mẫu tro bay ............................................... 9 1.1.5. Tro bay và cường độ nén của bê tông chất lượng siêu cao [4]...... 13 1.1.6. Ứng dụng của tro bay và xu hướng phát triển ............................... 14 1.1.7. Một số nghiên cứu về ứng dụng của tro bay ................................. 18 1.2. Tổng quan về sự làm việc của dầm Bê tông cốt thép........................... 19 1.2.1. Giới thiệu tổng quan về dầm Bê tông cốt thép .............................. 19 1.2.2. Sự làm việc của dầm Bê tông cốt thép .......................................... 20 1.3. Kết luận chương ................................................................................... 20
  6. CHƯƠNG 2: CƠ SỞ LÝ THUYẾT VỀ CƯỜNG ĐỘ CỦA BÊ TÔNG VÀ SỰ LÀM VIỆC CỦA DẦM BTCT CÓ SỬ DỤNG TRO BAY THAY THẾ MỘT PHẦN XI MĂNG ........................................................................................... 22 2.1. Cơ sở lý thuyết về cường độ................................................................. 22 2.1.1. Xác định cường độ chịu nén của mẫu bê tông [7] ......................... 22 2.1.2. Xác đinh mô đun đàn hồi và hệ số poisson [8] ............................. 22 2.2. Lý thuyết tính toán dầm Bê tông cốt thép theo TCVN 5574-2018 [6] 23 2.2.1. Lý thuyết tính toán dầm Bê tông cốt thép theo điều kiện nội lực tới hạn ............................................................................................................ 23 2.2.2. Lý thuyết tính toán độ võng của dầm Bê tông cốt thép theo TCVN 5574-2018 ................................................................................................ 24 2.2.3. Tính toán khả năng chịu cắt của dầm Bê tông cốt thép theo TCVN 5574-2018 ................................................................................................ 31 2.2.4. Tính toán lý thuyết cho mẫu thí nghiệm. ....................................... 34 CHƯƠNG 3: THỰC NGHIỆM SỰ LÀM VIỆC CỦA DẦM BÊ TÔNG CỐT THÉP B20 CÓ SỬ DỤNG HÀM LƯỢNG TRO BAY THAY THẾ XI MĂNG ......................................................................................................................... 37 3.1. Vật liệu sử dụng trong thí nghiệm ........................................................ 37 3.1.1. Cát (cốt liệu nhỏ) ........................................................................... 37 3.1.2. Xi măng ......................................................................................... 37 3.1.3. Đá dăm 1x2 (cốt liệu lớn) .............................................................. 38 3.1.4. Tro bay ........................................................................................... 39 3.1.5. Thép ............................................................................................... 39 3.2. Thiết bị sử dụng trong thí nghiệm ........................................................ 40 3.2.1. Trong quá chuẩn bị mẫu ................................................................ 40 3.2.2. Trong chương trình thí nghiệm...................................................... 41
  7. 3.3. Chương trình thí nghiệm ...................................................................... 41 3.3.1. Chuẩn bị mẫu ................................................................................. 41 3.3.2. Xác định cường độ chịu nén, Module đàn hồi (TCVN 3118 – 1993) .................................................................................................................. 47 3.3.3. Thực nghiệm khả năng chịu uốn ................................................... 50 3.3. Phân tích, nhận xét ............................................................................... 60 3.4.1. Về cường độ chịu nén .................................................................... 60 3.4.2. Về khả năng chịu uốn theo thực nghiệm ....................................... 61 3.4.3. Nhận xét: ........................................................................................ 61 KẾT LUẬN VÀ KIẾN NGHỊ......................................................................... 63 4.1. Kết luận ................................................................................................ 63 4.2. Kiến nghị .............................................................................................. 63 TÀI LIỆU THAM KHẢO ............................................................................... 63
  8. i DANH MỤC CÁC KÝ HIỆU VIẾT TẮT CHỮ CÁI LA TINH As Tổng diện tích tiết diện ngang của cốt thép chịu kéo As' Tổng diện tích tiết diện ngang của cốt thép chịu nén Ec Mô đun tổng thể của bê tông Eb Mô đun đàn hồi của bê tông Es Mô đun đàn hồi của thép I Mô men quán tính của tiết diện được xem là đồng nhất M Mô men uốn tính toán M gh Mô men uốn trạng thái giới hạn P Ngoại lực tác dụng b Bề rộng tiết diện dầm h Chiều cao tiết diện dầm L Nhịp tính toán của dầm x Chiều cao vùng bê tông chịu nén fc Cường độ chịu nén của vật liệu bê tông Cường độ chịu nén của bê tông không kiềm chế nở ngang fc đại giá trị cực đại Cường độ chịu nén của bê tông kiềm chế nở ngang đại giá trị f cc' cực đại f ck Cường độ đặc trưng mẫu trụ của vật liệu bê tông fy Cường độ của vật liệu thép ở trạng thái chảy f cm Cường độ chịu kéo của bê tông (theo tiêu chuẩn EC) f ctm Cường độ chịu nén của bê tông (theo tiêu chuẩn EC) fy Cường độ chịu kéo của cốt thép (theo tiêu chuẩn EC) Rbt ,cer Cường độ chịu kéo tiêu chuẩn của bê tông (theo TCVN) Rb,cer Cường độ chịu nén tiêu chuẩn của bê tông (theo TCVN)
  9. ii Rsw,cer Cường độ chịu cắt tiêu chuẩn của bê tông (theo TCVN) Độ võng lớn nhất của dầm BTCT dưới tác dụng của ngoại fm lực BT Bê tông BTCT Bê tông cốt thép BTCLSC Bê tông cất lượng siêu cao CHỮ CÁI HY LẠP c Biến dạng nén của bê tông Biến dạng nén của bê tông không bị kiềm chế có giá trị cực  c0 đại  cc Biến dạng nén của bê tông bị kiềm chế có giá trị cực đại  cu Biến dạng nén của bê tông bị kiềm chế tại trạng thái giới hạn s Biến dạng cốt thép  b1 Hệ số xét đến ảnh hưởng của từ biến ngắn hạn của bê tông Hệ số xét đến ảnh hưởng của từ biến dài hạn của bê tông đến b 2 biến dạng cấu kiện không có vết nứt Hệ số xét đến sự làm việc của bê tông vùng chịu kéo trên s đoạn có vết nứt Hệ số xét đến sự phân bố không đều biến dạng của thớ bê b tông chịu nén ngoài cùng trên chiều dài đoạn có vết nứt  Chiều cao tương đối vùng chịu nén của bê tông v Chiều cao tương đối vùng chịu nén của bê tông
  10. iii DANH MỤC BẢNG BIỂU Bảng 1.1. Chỉ tiêu chất lượng tro bay dùng cho bê tông [3]............................. 7 Bảng 1.2. Thành phần hóa học của tro bay [3] ............................................... 13 ‘ Bảng 2.1. Kết quả tính toán tải trọng và độ võng theo lý thuyết ................... 36 ‘ Bảng 3.1. Kết quả thí nghiệm Cát ................................................................... 37 Bảng 3.2. Kết quả thí nghiệm Xi măng........................................................... 38 Bảng 3. 3. Kết quả thí nghiệm đá .................................................................... 39 Bảng 3.4. Kết qủa thí nghiệm kéo, uốn........................................................... 40 Bảng 3.5. Thành phần cấp phối cho 1m3 bê tông ........................................... 41 Bảng 3.6. Số lượng mẫu thí nghiệm nén ......................................................... 42 Bảng 3.7. Mẫu dầm BTCT: Số lượng mẫu thí nghiệm uốn ............................ 42 Bảng 3.8. Kết quả khảo sát Module đàn hồi và hệ số poisson........................ 50 Bảng 3.9. Kết quả Thí nghiệm uốn 5 tổ hợp mẫu ........................................... 57 Bảng 3.10. Tổng hợp kết quả tính toán lý thuyết, thực nghiệm ..................... 61
  11. iv DANH MỤC HÌNH VẼ Hình 1.1. Hình dạng hạt tro bay [1]. ................................................................. 6 Hình 1.2. Ảnh hưởng của hàm lượng FA đến cường độ nén của BTCLSC, N/CKD = 0.18, (a) 27±2oC, (b) 90±5oC.......................................................... 14 Hình 1. 3. a Đập Puylaurent ở Pháp (b) Bê tông asphalt [2]. ......................... 15 Hình 1.4. Ứng dụng làm vật liệu không nung................................................. 16 ‘ Hình 2.1. Sơ đồ ép mẫu ................................................................................... 22 Hình 2.2. Tương quan giữa cường độ và thời gian ......................................... 22 Hình 2.3. Sơ đồ ứng suất của tiết diện. ........................................................... 24 Hình 2.4. Tiết diện ngang quy đổi và sơ đồ trạng thái ứng suất – biến dạng của cấu kiện có vết nứt khi tính toán biến dạng cấu kiện dưới tác dụng của mô men uốn ................................................................................................................... 28 Hình 2.5. Sơ đồ mẫu thí nghiệm ..................................................................... 34 Hình 2.6. Sơ đồ tính toán mẫu thí nghiệm ...................................................... 34 ‘ Hình 3.1. Mặt cắt ngang của mẫu dầm thí nghiệm. ........................................ 43 Hình 3.2. Cân đo, xác định khối lượng các thành phần cấp phối. .................. 43 Hình 3.3. Gia công Ván khuôn cốt thép......................................................... 45 Hình 3.4. Đổ bê tông mẫu. .............................................................................. 45 Hình 3.5. Đúc mẫu thí nghiệm. ....................................................................... 46 Hình 3.6. Trộn bê tông. ................................................................................... 46 Hình 3.7. Dưỡng hộ mẫu dầm BTCT. ............................................................ 47 Hình 3.8. Nén phá hoại mẫu............................................................................ 47 Hình 3.9. Mẫu thí nghiệm lập phương bị phá hoại. ........................................ 48 Hình 3.10. Biểu đồ cường chịu nén của các tổ hợp mẫu. ............................... 48 Hình 3.11. Thí nghiệm xác định Mô đun đàn hồi. .......................................... 49 Hình 3.12. Sơ đồ thí nghiệm dầm. .................................................................. 50 Hình 3.13. Lắp đặt mẫu, Loadcell, LDVT. ..................................................... 51 Hình 3.14. Số liệu Hệ thống đo STS-WiFi. .................................................... 51
  12. v Hình 3.15. Mẫu thí nghiệm bị phá hoại cắt..................................................... 52 Hình 3.16. Mẫu B20-0-2 bị phá hoại uốn và phá hoại cắt .............................. 52 Hình 3.17. Mẫu B20-15-1 bị phá hoại uốn và phá hoại cắt ............................ 53 Hình 3.18. Mẫu B20-15-2 bị phá hoại uốn ..................................................... 53 Hình 3.19. Mẫu B20-20-1 bị phá hoại uốn và phá hoại cắt ............................ 54 Hình 3.20. Mẫu B20-20-2 bị phá hoại uốn và phá hoại cắt ............................ 54 Hình 3.21. Mẫu B20-25-1 bị phá hoại uốn và phá hoại cắt ............................ 55 Hình 3.22. Mẫu B20-25-2 bị phá hoại uốn và phá hoại cắt ............................ 55 Hình 3.23. Mẫu B20-40-1 bị phá hoại uốn và phá hoại cắt ............................ 56 Hình 3.24. Mẫu B20-40-2 bị phá hoại uốn và phá hoại cắt ............................ 56 Hình 3.25. Quan hệ tải trọng và chuyển vị Mẫu đối chứng. ........................... 57 Hình 3.26. Quan hệ tải trọng và chuyển vị (mẫu B-15).................................. 58 Hình 3.27. Quan hệ tải trọng và chuyển vị (mẫu B-20).................................. 58 Hình 3.28. Quan hệ tải trọng và chuyển vị (mẫu B-25).................................. 59 Hình 3.29. Quan hệ tải trọng và chuyển vị (mẫu B-40).................................. 59 Hình 3.30. Biểu đồ tổng hợp so sánh quan hệ tải trọng và chuyển vị của các tổ mẫu thí nghiệm. ............................................................................................... 60
  13. 1 LỜI MỞ ĐẦU 1. Lý do chọn đề tài Trong nhiều thế kỷ qua, con người luôn tìm kiếm một vật liệu xây dựng thỏa mãn các yêu cầu về sử dụng, chịu lực, độ bền và hiệu quả kinh tế. Cùng với sự phát triển của khoa học nhiều loại vật liệu mới đã được nghiên cứu và chế tạo thành công trong đó có tro bay để thay thế xi măng. Tro bay là sản phẩm được tạo ra từ quá trình đốt than của các nhà máy nhiệt điện. Các hạt bụi tro được đưa ra qua các đường ống khói sau đó được thu hồi từ phương pháp kết sương tĩnh điện hoặc bằng phương pháp lốc xoáy. Tro bay là những tinh cầu tròn siêu mịn được cấu thành từ các hạt silic có kích thước hạt là 0,05 micromet, nhờ bị thiêu đốt ở nhiệt độ rất cao trong lò đốt nên có tính puzzolan là tính hút vôi rất cao. Nhờ độ mịn cao, độ hoạt tính lớn cộng với lượng silic tinh ròng (SiO2) có rất nhiều trong tro bay, nên khi kết hợp với ximăng puzzolan hay các loại chất kết dính khác sẽ tạo ra các sản phẩm bê tông có khả năng tăng mác bê tông, giảm khả năng xâm thực của nước, chống chua mặn; chống rạn nứt, giảm co gãy, cải thiện bề mặt sản phẩm và có tính chống thấm cao; tính chịu lực cao của bê tông; chống được sự xâm nhập của acid sulfuric của bê tông hiện đại; tạo tính bền sulfat cho bê tông của xi măng portland; hạ nhiệt độ cho bê tông. Theo số liệu tổng hợp của Bộ Công Thương, hiện cả nước có 25 nhà máy nhiệt điện đốt than đang hoạt động, phát thải ra tổng lượng tro, xỉ khoảng 13 triệu tấn/năm, trong đó tro bay chiếm từ 80% đến 85%. Lượng phát thải tập trung chủ yếu ở khu vực miền Bắc, chiếm 65%, miền Trung chiếm 23% và miền Nam chiếm 12% tổng lượng thải. Trong số này, lượng tro xỉ phát thải từ 13 nhà máy nhiệt điện than thuộc Tập đoàn Điện lực Việt Nam (EVN) là 8,57 triệu tấn, chiếm 64% tổng lượng phát thải của cả nước. Tập đoàn Công nghiệp Than-Khoáng sản Việt Nam (TKV) có 6 nhà máy với lượng tro, xỉ phát thải là 2,05 triệu tấn, chiếm 15%
  14. 2 tổng lượng phát thải và 1 nhà máy thuộc Tập đoàn Dầu khí Việt Nam với 0,784 triệu tấn chiếm khoảng 6% tổng lượng tro xỉ phát thải. Cùng với đó là 5 nhà máy của các chủ đầu tư BOT và các chủ đầu tư khác phát thải khoảng 2 triệu tấn, chiếm 15% tổng lượng phát thải của cả nước. Nhằm tiếp tục tăng cường, đẩy mạnh việc xử lý sử dụng tro, xỉ, thạch cao ngày, ngày 12/4/2017 Thủ tướng Chính phủ đã tiếp tục ban hành Quyết định số 452/QĐ-TTg về việc Phê duyệt Đề án đẩy mạnh xử lý, sử dụng tro, xỉ, thạch cao làm nguyên liệu sản xuất vật liệu xây dựng và sử dụng trong các công trình xây dựng (Quyết định số 452/QĐ-TTg). Qua gần 4 năm, triển khai thực hiện Quyết định này, mặc dù đã có nhiều nỗ lực nhưng kết quả thực tế vẫn chưa đạt mục tiêu đề ra. Tính đến cuối năm 2020, tổng lượng tro, xỉ nhiệt điện đã tiêu thụ trên cả nước khoảng 44,5 triệu tấn, tương đương với 42% tổng lượng phát thải qua các năm. Trong đó, EVN tiêu thụ khoảng gần 23 triệu tấn, TKV tiêu thụ được khoảng hơn 6 triệu tấn, PVN tiêu thụ được gần 1,5 triệu tấn. Các nhà máy BOT và các chủ đầu tư khác tiêu thụ khoảng 4 triệu tấn. Thực tế cho thấy tro, xỉ được sử dụng nhiều nhất là lĩnh vực làm phụ gia khoáng cho xi măng, ước khoảng 24 triệu tấn, chiếm 70%; sản xuất gạch đất sét nung và gạch không nung ước khoảng 4 triệu tấn, chiếm 12%; làm phụ gia cho sản xuất bê tông tươi, bê tông cho các công trình thủy lợi, công trình giao thông (đường bê tông xi măng vùng nông thôn) và công trình xây dựng dân dụng (kết cấu móng khối lớn ít tỏa nhiệt) ước khoảng 3 triệu tấn, chiếm 8%; và làm vật liệu san lấp, đắp đường giao thông các loại khoảng 3,5 triệu tấn, chiếm 9%. Như vậy, vẫn còn tồn đọng hơn 90% lượng tro bay chưa đươc tiêu thụ còn tồn đọng tại các bãi chứa. Lượng lớn tro bay này nếu không được xử lý và tiêu thụ sẽ rất dễ ảnh hưởng xấu đến môi trường xung quanh. Đã có rất nhiều nghiên cứu và ứng dụng tro bay làm vật liệu xây dựng để giảm tải cho các bãi thải của các nhà máy nhiệt điện, góp phần bảo vệ môi
  15. 3 trường. Trong đó ứng dụng tro bay để thay thế xi măng trong bê tông đã và đàn được thực hiện. Các nghiên cứu trước đó chỉ ra rằng khi tro bay được sử dụng để thay thế xi măng thì cường độ chịu nén, kéo của bê tông sẽ giảm ở giai đoạn trước 28 ngày nhưng sau đó sẽ tăng, thời gian và mức độ tăng cường độ phụ thuộc vào tỉ lệ thành phần tro bay thay thế xi măng và loại tro bay. Tuy nhiên chưa có nghiên cứu thực nghiệm cụ thể nào về ảnh hưởng của tro bay đối với sự làm việc chung của bê tông và cốt thép cũng như khả năng chịu uốn của dầm BTCT. Đây chính là lý do tác giả làm đề tài nghiên cứu: “Nghiên cứu ứng dụng tro bay thay thế một phần xi măng trong bê tông để sử dụng cho dầm bê tông cốt thép”. 2. Mục đích nghiên cứu Nghiên cứu thực nghiệm khả năng chịu uốn và chịu cắt của dầm BTCT khi bê tông sử dụng đúc dầm có cấp độ bền chịu nén B20 có tro bay thay thế xi măng. Các tỉ lệ tro bay thay thế xi măng lần lượt là 15%; 20%; 25%và 40%. Xem xét sự ảnh hưởng của tro bay đối với sự làm việc chung giữa bê tông và cốt thép trong dầm BTCT thông qua các thông số đo được từ thực nghiệm như trình bày ở mục 3. Ứng dụng tro bay thay thế một phần xi măng trong bê tông với hàm lượng tối ưu được xác định bằng thực nghiệm để đưa vào sản xuất bê tông sử dụng cho cấu kiện dầm BTCT. 3. Mục tiêu nghiên cứu Đánh giá được khả năng các chỉ tiêu cơ lý của bê tông thông thường và bê tông có sử dụng tro bay thay thế xi măng lần lượt ở các tỉ lê 15%; 20% 25% và 40%. Đánh giá được khả năng chịu uốn và chịu cắt của dầm BTCT thông thường và dầm BTCT có sử dụng tro bay thay thế xi măng lần lượt ở các tỉ lê 15%; 20% 25% và 40%.
  16. 4 4. Đối tượng và phạm vi nghiên cứu 4.1. Đối tượng nghiên cứu Các loại vật liệu địa phương: Cát Sông Ba mỏ Công ty Hưng Thịnh, Đá 1x2 mỏ Nắng Ban Mai, Xi măng Nghi sơn, thép Việt Mỹ. Mẫu lập phương KT: 15cm x 15cm x 15cm cấp độ bền chịu nén B20 thông thường và mẫu lập phương sử dụng tro bay thay thế hàm lượng xi măng với các tỉ lệ lần lượt là 15%; 20%; 25% và 40%. Thí nghiệm cường độ chịu nén của mẫu ở 3 ngày tuổi; 7 ngày tuổi và 28 ngày tuổi. Dầm BTCT kích thước 100x150x800 cấp độ bền chịu nén B20 thông thường và bê tông cấp độ bền chịu nén B20 sử dụng tro bay thay thế hàm lượng xi măng với các tỉ lệ lần lượt là 15%; 20%; 25% và 40%. Thí nghiệm khả năng chịu uốn của dầm ở 28 ngày tuổi. 4.2. Phạm vi nghiên cứu Nghiên cứu tổng quan về khả năng phát triển cường độ chịu nén của bê tông B20 có sử dụng tro bay thay thế một phần xi măng so với bê thông B20 thông thường. Nghiên cứu tổng quan về sự làm việc của dầm bê tông cốt thép và các nhân tố ảnh hưởng đến khả năng chịu uốn và chịu cắt của dầm bê tông cốt thép.
  17. 5 CHƯƠNG 1: TỔNG QUAN VỀ TRO BAY VÀ DẦM BTCT 1.1. Tổng quan về tro bay 1.1.1. Tổng quan về tro bay. Tro bay là sản phẩm được tạo ra từ quá trình đốt than của các nhà máy nhiệt điện. Các hạt bụi tro được đưa ra qua các đường ống khói sau đó được thu hồi từ phương pháp kết sương tĩnh điện hoặc bằng phương pháp lốc xoáy. Tro bay là những tinh cầu tròn siêu mịn được cấu thành từ các hạt silic có kích thước hạt là 0,05 micromet, tức là 50 nanomet (1 nanomet = 10-9 centimet). Nhờ bị thiêu đốt ở nhiệt độ rất cao trong lò đốt (đạt khoảng 1.4000C) nên nó có tính puzzolan là tính hút vôi rất cao. Nhờ độ mịn cao, độ hoạt tính lớn cộng với lượng silic tinh ròng (SiO2) có rất nhiều trong tro bay, nên khi kết hợp với ximăng portland hay các loại chất kết dính khác sẽ tạo ra các sản phẩm bê tông với độ cứng vượt trội (mác cao) có khả năng chống thấm cao, tăng độ bền với thời gian, không nứt nẻ, giảm độ co gãy, có tính chống kiềm và tính bền sulfat, dễ thao tác, rút ngắn tiến độ thi công do không phải xử lý nhiệt... Ngoài ra, nó còn giảm nhẹ tỉ trọng của bê tông một cách đáng kể. Trong hơn 5 thập niên qua, tro bay được ứng dụng vào thực tiễn của ngành xây dựng một cách rộng rãi và đã có những công trình lớn trên thế giới sử dụng sản phẩm này như là một phụ gia không thể thiếu. Tính đến cuối năm 2020, tổng lượng tro, xỉ lưu giữ tại bãi chứa của các nhà máy nhiệt điện than vẫn còn khoảng 47,65 triệu tấn. Báo cáo của Sở Xây dựng tỉnh Bình Thuận cho thấy, tính đến tháng 6/2020, tại Trung tâm nhiệt điện Vĩnh Tân, tỉnh Bình Thuận, lượng tro, xỉ phát sinh từ các nhà máy nhiệt điện Vĩnh Tân 1, nhiệt điện Vĩnh Tân 2, nhiệt điện Vĩnh Tân 4 và nhiệt điện Vĩnh Tân 4 mở rộng khoảng trên 10,9 triệu tấn nhưng lượng tro xỉ đã được xử lý, tiêu thụ chỉ đạt con số rất khiêm tốn, hơn 1,049 triệu tấn, chiếm 9,62%.
  18. 6 Các công trình tiêu biểu đã sự dụng tro bay làm phụ gia là: Đập Tomisato cao 111m ở Nhật Bản được xây dựng từ những năm 1950 đã sử dụng 60% tro bay thay thế xi măng; Trung Quốc đưa tro bay vào công trình xây dựng đập thủy điện từ những năm 1980; Công trình Azure trị giá 100 triệu USD hoàn thành năm 2005 đã sử dụng 35% tro bay thay thế xi măng. Nhiều nghiên cứu trên thế giới đã được đúc kết: Các công trình có sử dụng tro bay sẽ đem đến 3 lợi ích to lớn và rất thiết thực cho ngành công nghiệp xây dựng là: Chất lượng sản phẩm ưu việt hơn. Giá thành rẻ hơn. Góp phần bảo vệ môi trường. Hình 1.1. Hình dạng hạt tro bay [1]. 1.1.2. Phân loại [3] Phân loại theo Tiêu chuẩn TCVN 10302-2014 – Phụ gia hoạt tính tro bay dùng cho bê tông, vữa xây mà xi măng: - Theo thành phần hóa học, tro bay được phân làm 02 loại: + Tro axit: tro có hàm lượng canxi oxit đến 10 %, ký hiệu: F + Tro bazơ: tro có hàm lượng canxi oxit lớn hơn 10 %, ký hiệu: C - Phân loại theo mục đích sử dụng: tro bay được phân thành 02 loại:
  19. 7 + Tro bay dùng cho bê tông và vữa xây, bao gồm 4 nhóm lĩnh vực sử dụng, Dùng cho chế tạo sản phẩm và cấu kiện bê tông cốt thép từ bê tông nặng và bê tông nhẹ, ký hiệu: a; + Dùng cho chế tạo sản phẩm và cấu kiện bê tông không cốt thép từ bê tông nặng, bê tông nhẹ và vữa xây, ký hiệu: b; + Dùng cho chế tạo sản phẩm và cấu kiện bê tông tổ ong, ký hiệu: c; + Dùng cho chế tạo sản phẩm và cấu kiện bê tông, bê tông cốt thép làm việc trong điều kiện đặc biệt, ký hiệu: d. - Ví dụ: + Fa - tro axit dùng cho chế tạo sản phẩm và cấu kiện bê tông cốt thép; + Cb - tro bazơ dùng cho chế tạo sản phẩm và cấu kiện bê tông không cốt thép; + Tro bay dùng cho xi măng, ký hiệu: Xm; + FXm - tro axit dùng cho chế tạo xi măng; + CXm - tro bazơ dùng cho chế tạo xi măng. 1.1.3. Chỉ tiêu chất lượng tro bay dùng cho bê tông Trộn cốt liệu lớn với cốt liệu nhỏ trong máy trộn, sau đó xi măng được thêm vào trong quá trình nhào trộn. Sợi được cho vào trong quá trình trộn với hàm lượng tính toán trước. Hỗn hợp nước và phụ gia dẻo được nhào trộn và cho vào hỗn hợp bê tông. Bảng 1.1. Chỉ tiêu chất lượng tro bay dùng cho bê tông [3] Loại Lĩnh vực sử dụng - Mức Chỉ tiêu tro a b c d bay 1. Tổng hàm lượng ôxit F 70 SiO2 + Al2O3 + Fe2O3, % khối lượng, không nhỏ hơn C 45
  20. 8 Loại Lĩnh vực sử dụng - Mức Chỉ tiêu tro a b c d bay 2. Hàm lượng lưu huỳnh, hợp chất lưu huỳnh tính quy đổi ra F 3 5 3 3 SO3, % khối lượng, không lớn hơn C 5 5 6 3 3. Hàm lượng canxi ôxit tự do F - - - - CaOtd, % khối lượng, không lớn hơn C 2 4 4 2 4. Hàm lượng mất khi nung F 12 15 8* 5* MKN, % khối lượng, không lớn hơn C 5 9 7 5 5. Hàm lượng kiềm có hại F (kiềm hòa tan), % khối lượng, 1,5 không lớn hơn C 6. Độ ẩm, % khối lượng, F 3 không lớn hơn C 7. Lượng sót sàng 45mm, % F 25 34 40 18 khối lượng, không lớn hơn
nguon tai.lieu . vn