Xem mẫu

  1. 1 MỞ ĐẦU Vật liệu từ cứng (VLTC) là vật liệu có khả năng tích trữ năng lượng của t ừ trường tác động lên nó và trở thành nguồn phát từ trường. Khả năng tích trữ năng lượng đó được đặc trưng bằng đại lượng tích năng lượng cực đại (BH) max của vật liệu. VLTC được ứng dụng từ rất lâu và trong rất nhiều lĩnh vực của cuộc sống: Kim la bàn, cửa tủ lạnh, ổ cứng máy tính, mô tơ, máy phát điện, máy tuy ển quặng, thiết bị khoa học kỹ thuật, thiết bị y tế… Tiềm năng ứng dụng lớn đã thúc đẩy s ự tìm kiếm vật liệu mới và công nghệ chế tạo mới, nhằm tạo ra những vật liệu có tính chất từ tốt hơn đáp ứng được các yêu cầu của cuộc sống hiện đại. Một trong các VLTC được các nhà khoa học quan tâm nghiên cứu nhiều hiện nay là vật liệu ̀ nanocomposite nên Nd-Fe-B. VLTC nanocomposite nên Nd-Fe-B bao gồm các pha từ mềm (Fe3B, α ̀ -Fe) và pha từ cứng (Nd2Fe14B) có kích thước nanomet [25]. Ở kích thước này, hiệu ứng tương tác trao đổi đàn hồi giữa pha từ cứng và pha từ mềm cho phép khai thác được cả từ độ bão hòa lớn của pha từ mềm và lực kháng từ cao của pha từ cứng, để tạo nên một vật liệu có tích năng lượng (BH) max lớn. Loại vật liệu này có thể chỉ cần một lượng Nd bằng khoảng 1/3 so với nam châm thiêu kết Nd 2Fe14B thông thường, nên làm tăng độ bền cơ học, hóa học và giảm đáng kể giá thành. Mặt khác, công nghệ chế tạo cũng đơn giản hơn và dễ dàng tạo được nam châm có hình dạng phức tạp theo yêu cầu. Với những ưu điểm đó, nó được nhiều phòng thí nghiệm quan tâm nghiên cứu, nên tốc độ tăng trưởng hàng năm khoảng 20% cao hơn cả tốc độ tăng trưởng của nam châm thiêu kết [56]. Tuy nhiên, VLTC nanocomposite nên Nd-Fe-B ̀ vẫn còn một số yếu điểm cần được khắc phục như lực kháng từ H c chưa cao, tích năng lượng cực đại (BH)max thực tế nhỏ hơn 20 MGOe còn cách xa giới hạn lý thuyết (theo lý thuyết (BH)max đạt trên 100 MGOe), nhiệt độ Curie thấp và công nghệ chế tạo chưa ổn định. Điều đó đặt ra là làm cách nào để nâng cao được tính chất từ và ổn định công nghệ chế tạo vật liệu. Tính chất từ của VLTC nanocomposite nên Nd-Fe-B được quyết định rất ̀ nhiều bởi kích thước hạt, dạng hạt, sự phân bố hạt trong vật liệu và bản ch ất pha từ của hạt. Cấu trúc lý tưởng của các VLTC này là các pha từ mềm nằm xen kẽ, bao bọc các pha từ cứng một cách đồng đều. Tuy vậy, để chế tạo được vi cấu trúc như vậy là điều không dễ dàng. Tính chất từ của VLTC nanocomposite nên Nd-Fe- ̀ B còn phụ thuộc vào bản chất của các pha từ thành phần (từ độ bão hòa, d ị h ướng
  2. 2 từ tinh thể…). Hiện nay, có hai hướng nghiên cứu chính nhằm cải thiện cấu trúc, nâng cao phẩm chất của vật liệu: một là bổ sung vào hợp kim nền Nd-Fe-B một số nguyên tố khác với mục đích thay đổi tính chất từ nội tại của vật liệu hoặc cải thiện vi cấu trúc [14], [15], [20], [47]; hai là thay đổi điều kiện công nghệ chế tạo để tạo ra vi cấu trúc và thành phần pha của vật liệu như mong muốn [16], [32], [38], [44], [69], [70], [91]. Từ những lý do trên chúng tôi đã chọn đề tài nghiên cứu c ủa lu ận án là: Nghiên cứu chế tạo hợp kim từ cứng nền Nd-Fe-B cấu trúc nanomet bằng phương pháp nguội nhanh và nghiền cơ năng lượng cao. Đối tượng nghiên cứu của luận án: VLTC nanocomposite (Nd,Pr,Dy)-(Fe,Co)-Nb-B. Mục tiêu nghiên cứu của luận án: Nâng cao chất lượng và hoàn thiện công nghệ chế tạo vật liệu từ cứng nanocomposite Nd-Fe-B, bằng cách thay đổi hợp phần và khảo sát mối liên hệ giữa cấu trúc và tính chất của chúng. Phương pháp nghiên cứu: Luận án được tiến hành bằng phương pháp thực nghiệm. Các mẫu nghiên cứu được chế tạo bằng phương pháp phun băng nguội nhanh và nghiền cơ năng lượng cao. Nghiên cứu cấu trúc của mẫu bằng các kỹ thuật nhiễu xạ tia X và hiển vi điện tử. Tính chất từ của vật liệu được khảo sát bằng các phép đo từ trễ và từ nhiệt. Các nam châm kết dính được chế tạo theo quy trình công nghệ ép nguội và ép nóng. Ý nghĩa khoa học của luận án: Các kết quả nghiên cứu của luận án đã xây dựng được b ức tranh tương đ ối hoàn thiện về ảnh hưởng của hợp phần và các điều kiện công nghệ ch ế tạo lên cấu trúc và tính chất từ của VLTC nanocomposite Nd-Fe-B. Mặt khác, đề tài có ý nghĩa khoa học cao trong việc ứng dụng các hiệu ứng vật lý ở kích th ước nanomet cho việc tạo ra các loại vật liệu từ tiên tiến. Nội dung của luận án bao gồm: (i) Thêm vào hợp kim Nd-Fe-B một số nguyên tố (Pr, Dy, Nb, Co) để tăng cường được các tham số từ cứng như lực kháng từ, tích năng lượng cực đại và nhiêt độ Curie TC, đông thời làm ôn đinh công nghệ chế tao vât liêu. ̣ ̀ ̉ ̣ ̣ ̣ ̣
  3. 3 (ii) Nghiên cứu ảnh hưởng của tỉ phần các nguyên tố và công nghệ ch ế tạo lên cấu trúc và tính chất từ của VLTC nanocomposite Nd-Fe-B. (iii) Nghiên cứu chế tạo vật liệu nanocomposite Nd-Fe-B bằng cả hai phương pháp: nguội nhanh và nghiền cơ năng lượng cao. (iv) Nghiên cứu ảnh hưởng tương hỗ giữa các điều kiện chế tạo để đưa ra công nghệ chế tạo tối ưu. (v) Thử nghiệm chế tạo nam châm đan hôi Nd-Fe-B bằng phương pháp ép ̀ ̀ nguội và ép nóng. Bố cục của luận án: Nội dung chính của luận án được trình bày trong 4 chương. Chương đầu là phần tổng quan về VLTC nanocomposite Nd-Fe-B. Chương tiếp theo trình bày các kỹ thuật thực nghiệm về phương pháp chế tạo mẫu và các phép đo đ ặc trưng c ấu trúc và tính chất của vật liệu, cách tính đại lượng (BH) max và sai số trong các phép đo. Hai chương cuối trình bày các kết quả nghiên cứu đã thu được, bàn luận v ề ảnh hưởng của hợp phần và các yếu tố công nghệ lên cấu trúc và tính ch ất t ừ c ủa vật liệu nanocomposite Nd-Fe-B. Kết quả chính của luận án: Đã khảo sát một cách hệ thống ảnh hưởng của các nồng độ đất hi ếm t ừ nhỏ (RE = 4%) đến lớn (RE = 12%) và ảnh h ưởng của các nguyên tố pha thêm Nb, Co, Pr và Dy lên cấu trúc và tính chất từ của vật liệu nanocomposite Nd-Fe-B. Đã xây dựng được quy trình công nghệ tương đối hoàn thiện để ch ế tạo được VLTC nanocomposite Nd-Fe-B có chất lượng tốt, có thể đưa vào ứng dụng thực tế. Luận án được thực hiện tại Phòng thí nghiệm Trọng điểm về V ật li ệu và Linh kiện Điện tử và Phòng Vật lý Vật liệu Từ và Siêu dẫn, Vi ện Khoa h ọc V ật liệu, Viện Khoa học và Công nghệ Việt Nam. Chương 1. TỔNG QUAN VỀ VẬT LIỆU TỪ CỨNG NANOCOMPOSITE Nd-Fe-B 1.1. Lịch sử phát triển của vật liệu từ cứng VLTC đã được tìm thấy và ứng dụng từ rất lâu, nhưng phải đến thế kỷ XX thì VLTC mới thực sự được nghiên cứu và ứng dụng nhiều. Đầu tiên là vật liệu thép kỹ thuật có (BH)max ∼ 1 MGOe. Tiếp theo là vật liệu Alnico và ferit từ cứng có (BH)max ~ 5 MGOe được chế tạo. Việc tìm ra VLTC chứa đất hiếm là một bước tiến quan trọng trong quá trình phát triển VLTC. VLTC chứa đất hiếm chủ yếu là SmCo 5 có (BH)max >
  4. 4 20 MGOe, Sm2Co17 có (BH)max > 30 MGOe và Nd2Fe14B có (BH)max > 50 MGOe. Vật liệu từ cứng nanocomposite Nd-Fe-B, tổ hợp của pha t ừ cứng Nd2Fe14B và hai pha từ mềm α-Fe, Fe3B được chế tạo vào năm 1988. Loại vật liệu này đang được quan tâm nghiên cứu vì khả năng ứng dụng lớn và có thể nâng cao h ơn nữa tích năng lượng (BH)max. Theo tính toán trong lý thuyết vật liệu này có thể cho (BH) max > 100 MGOe. 1.2. Cấu trúc và tính chất từ của vật liệu từ cứng Nd2Fe14B 1.2.1. Cấu trúc tinh thể Hợp kim Nd2Fe14B thuộc nhóm không gian P42/mnm, có cấu trúc tinh thể tứ giác với hằng số mạng a = 0,878 nm và c = 1,220 nm, kh ối l ượng riêng 7,55 g/cm 3. Cấu trúc tinh thể Nd2Fe14B ổn định nhờ nguyên tử B kết hợp với 6 nguyên tử Fe tạo thành một hình lăng trụ đáy tam giác và các lăng trụ này l ại đ ược n ối v ới nhau bởi các lớp Fe. Cấu trúc tinh thể ổn định cùng với độ bất đối xứng rất cao t ạo nên tính từ cứng mạnh cho vật liệu. 1.2.2. Tính chất từ Pha Nd2Fe14B có dị hướng từ tinh thể K 1 = 4,9.106 J/m3, từ độ bão hòa μ0Ms = 1,61 T và nhiệt độ Curie TC = 585 K (312oC). 1.3. Phân loại vật liệu từ cứng Nd-Fe-B 1.3.1. Nam châm thiêu kết Nd-Fe-B Trong nam châm thiêu kết các hạt từ kích thước vài micromet được liên kết nhau bởi một pha phi từ giàu Nd ở biên hạt. Vật liệu này có tính dị hướng cao, có tích năng lượng cực đại (BH)max lớn, (BH)max ∼ 57 MGOe và có lực kháng từ lớn H c ∼ 10 ÷ 25 kOe. 1.3.2. Nam châm kết dính Nd-Fe-B Trong nam châm kết dính các hạt bột sắt từ Nd-Fe-B được liên k ết v ới nhau bởi chất kết dính hữu cơ. Đáng chú ý là nam châm k ết dính đàn h ồi hay còn g ọi là vật liệu nanocomposite. Vật liệu này có vi cấu trúc ở kích thước nanô nên chúng có những tính chất mới mà ở kích thước thông thường không th ể có đ ược nên làm tăng phẩm chất từ của vật liệu. 1.4. Cấu trúc và tính chất của vật liệu nanocomposite Nd-Fe-B 1.4.1. Cấu trúc của vật liệu nanocomposite Nd-Fe-B Vật liệu nanocomposite là vật liệu tổ hợp hai pha cứng mềm ở kích thước nanomet. Với cấu trúc nano, các hạt từ cứng (Nd 2Fe14B) liên kết với các hạt từ mềm (α-Fe, Fe3B) thông qua tương tác trao đổi đàn hồi. Nhờ vậy đã kết h ợp được ưu điểm từ độ bão hòa cao của pha từ mềm và tính dị hướng từ lớn của pha t ừ
  5. 5 cứng để tạo ra vật liệu có (BH)max cao. 1.4.2. Tính chất của vật liệu nanocomposite Nd-Fe-B Lực kháng từ và độ vuông đường trễ của vật liệu này ph ụ thu ộc vào vi c ấu trúc. Lực kháng từ thay đổi trong khoảng khá rộng từ cỡ 2 kOe đến 15 kOe và tích năng lượng từ cực đại thay đổi trong khoảng từ vài MGOe đến 20 MGOe. Nhiệt độ Curie của vật liệu này được quyết định bởi pha từ cứng Nd2Fe14B (~ 585 K). 1.5. Một số mô hình lý thuyết cho vật liệu từ cứng nanocomposite Nd-Fe-B 1.5.1. Mô hình E. F. Kneller và R. Hawig (K-H) Đây là mô hình đơn giản mà lại khá phù hợp với th ực nghiệm . Kết quả tính toán cho thấy, để phát huy tương tác trao đổi giữa hai pha từ cứng và t ừ m ềm, các hạt tinh thể của cả hai pha có kích th ước khoảng 10 nm và phân tán đ ồng đ ều với tỉ phần thể tích pha từ cứng có thể giảm xuống tới 9% thể tích vật liệu. 1.5.2 . Một số mô hình khác Một số các lý thuyết như của R. Skomski, J. M. D. Coey, Schreft và Fisher có các ưu nhược điểm khác nhau và thường được áp dụng cho các trường hợp cụ thể của vật liệu. 1.6. Các phương pháp chế tạo vật liệu từ cứng nanocomposite Nd-Fe-B 1.6.1. Phương pháp phun băng nguội nhanh Nguyên tắc của phương pháp phun băng nguội nhanh là sử dụng năng l ượng của dòng cảm ứng để năng lượng hóa vật liệu. Sau đó vật li ệu đ ược phun lên b ề mặt trống quay nhẵn bóng đã được làm lạnh bởi dòng nước chảy ngầm bên trong, để tạo ra các băng hợp kim nguội nhanh có cấu trúc VĐH hoặc nano tinh thể. 1.6.2. Phương pháp nghiền cơ năng lượng cao Nghiền cơ năng lượng cao (NCNLC) là kỹ thuật sử dụng động năng của các viên bi năng lượng hóa vật liệu (dựa trên sự va đập các bi thép cứng vào vật liệu). Các bi thép này cùng với vật liệu được quay ly tâm hoặc lắc với tốc độ rất cao trong buồng kín cho phép tạo ra bột vật liệu có kích thước nano hoặc VĐH. 1.6.3. Các phương pháp khác Một số phương pháp khác như phương pháp cán nóng và phương pháp tách vỡ tái hợp sử dụng khí hydro HDDR cũng có thể dùng để ch ế tạo VLTC nanocomposite. 1.7. Các yếu tố ảnh hưởng lên tính chất từ của vật li ệu nanocomposite Nd-Fe-B 1.7.1. Ảnh hưởng của điều kiện công nghệ Điều kiện công nghệ ảnh hưởng nhiều đến vi cấu trúc và do đó ảnh h ưởng đến tính chất từ của vật liệu. Mỗi hợp kim với thành phần xác định cần ph ải có một điều kiện công nghệ tối ưu tương ứng. Các yếu tố trong công ngh ệ nguội
  6. 6 nhanh gồm tốc độ làm nguội hợp kim, nhiệt độ ủ, thời gian ủ nhiệt, tốc độ gia nhiệt. Với phương pháp nghiền cơ năng lượng cao yếu tố công nghệ là tỉ lệ bi/bột, tốc độ nghiền, thời gian nghiền, thể tích cối nghiền và môi trường nghiền. 1.7.2. Ảnh hưởng của các nguyên tố pha thêm Tính chất từ của vật liệu có thể được cải thiện đáng kể khi thêm vào một số nguyên tố. Việc pha thêm các nguyên tố đất hiếm như Pr, Dy, Tb có thể làm gia tăng đáng kể lực kháng từ của vật liệu. Nb có thể làm giảm đáng kể kích thước hạt và khống chế hiệu quả sự hình thành các hạt nanô tinh th ể trong h ợp kim. Ảnh hưởng nổi bật của Co là làm tăng nhiệt độ Curie và góp phần ổn định công ngh ệ chế tạo 1.8. Ứng dụng và thị trường của vật liệu nanocomposite Nd-Fe-B Vật liệu nanocomposite Nd-Fe-B trên thị trường hiện nay thường ở hai dạng là bột hợp kim và các nam châm kết dính . Nam châm kết dính Nd-Fe-B có triển vọng ứng dụng ngày càng nhiều trong thực tế. Hiện nay, trên th ế giới có rất nhi ều hãng sản xuất nam châm kết dính Nd-Fe-B. Nhìn chung, các nam châm k ết dính Nd-Fe-B trên thị trường có tích năng lượng (BH)max thấp hơn 12 MOe. 1.9. Nghiên cứu và phát triển vật liệu nanocomposite Nd-Fe-B ở Việt nam VLTC nanocomposite Nd-Fe-B luôn được các phòng thí nghiệm ở Việt Nam quan tâm nghiên cứu. Điều này được thể hiện qua nhiều báo cáo tại các hội nghị khoa học và trên các tạp chí chuyên ngành của nhiều nhóm tác giả như nhóm của GS. Nguyễn Hoàng Nghị (ĐHBK Hà Nội), nhóm nghiên cứu của GS. Lưu Tuấn Tài, GS. Nguyễn Châu (ĐHQG Hà Nội), nhóm của PGS. Nguyễn Văn Vượng, PGS. Nguyễn Huy Dân (Viện Khoa học Vật liệu)... Các nam châm kết dính chế tạo được ở trong nước đã có tích năng lượng (BH)max đạt tới khoảng 8 MGOe. Hiện nay, Viện Khoa học Vật liệu là đơn vị khá mạnh trong lĩnh vực nghiên cứu và phát triển các ứng dụng của vật liệu từ Nd-Fe-B. Chương 2. KỸ THUẬT THỰC NGHIỆM 2.1. Chế tạo mẫu hợp kim Nd-Fe-B 2.1.1. Chế tạo các hợp kim khôi Nd-Fe-B băng lò hồ quang ́ ̀ Phương pháp hồ quang được dùng để chế tạo các hợp kim khối ban đầu từ các nguyên tố Nd, Pr, Dy, Fe, Co, Nb và hợp kim FeB (B 18%) với độ sạch cao. Các hợp kim khối này được dùng để tạo các mẫu băng và mẫu bột bằng phương pháp phun băng nguội nhanh và nghiền cơ năng lượng cao. 2.1.2. Chế tạo băng hợp kim Nd-Fe-B băng phương phap nguôi nhanh ̀ ́ ̣
  7. 7 Hợp kim được nấu nóng chảy bằng lò cao tần rồi được phun lên mặt của một trống đồng lạnh đang quay với tốc độ lớn để tạo ra các băng hợp kim có độ dày 20 ÷ 60 µm. 2.1.3. Chế tao hợp kim Nd-Fe-B băng phương phap nghiên cơ năng lượng cao ̣ ̀ ́ ̀ Mẫu nghiền đựng trong cối và được nghiền bởi nhiều bi nghiền có kích thước khác nhau để tăng hiệu quả nghiền. 2.1.4. Xử lý nhiêt mâu hợp kim Nd-Fe-B ̣ ̃ Quá trình ủ nhiệt nhằm mục đích tạo pha tinh thể có thành phần và cỡ hạt mong muốn. ́ ̣ ́ ́ 2.1.5. Ep tao viên nam châm kêt dinh Ép thường (ép nguội): Cho bột vào khuôn, tăng dần lực ép đến 15 tấn, duy trì lực ép khoảng 5 phút, triệt tiêu lực ép dỡ khuôn lấy mẫu, được viên nam châm. Ép nhiệt (ép nóng): cho bột vào khuôn, đặt khuôn vào lò gia nhiệt và ép gia nhiệt ở nhiệt độ 300oC. Duy trì áp lực lên mẫu trong thời gian 15 phút sao cho nhiệt độ của mẫu trong lò giảm xuống dưới nhiệt độ nóng chảy của chất kết dính (150oC) thì xả áp và chờ cho mẫu nguội tự nhiên thì lấy mẫu ra. 2.2. Các phương phap nghiên cứu cấu trúc ́ 2.2.1. Phương pháp nhiễu xạ tia X Qua phổ nhiễu xạ tia X ta có thể xác định được các đặc trưng cấu trúc của mạng tinh thể như: kiểu mạng, pha tinh thể và các hằng số mạng. Từ phổ XRD cũng có thể đánh giá được độ VĐH và tỉ phần pha tinh thể của các mẫu. 2.2.2. Phương pháp hiển vi điện tử Phương pháp hiển vi điện tử là kỹ thuật rất hiện đại để kết luận mẫu là VĐH thực sự hay gồm vi tinh thể rất nhỏ trên nền pha VĐH, cũng như xác định cỡ hạt, thành phần pha vi tinh thể. Kính hiển vi điện t ử quét (Scanning Electron Microscope - SEM) cho thông tin về bề mặt mẫu (hình dạng, kích thước hạt, thành phần hóa học ...). Kính hiển vi điện tử truyền qua (Transmission Electron Microscopy - TEM) cho biết thông tin cả về hình dạng, kích thước hạt lẫn cấu trúc bên trong mẫu (cấu trúc tinh thể, hằng số mạng...). 2.3. Các phép đo nghiên cứu tính chất từ 2.3.1. Phép đo từ nhiệt trên hệ từ kế mẫu rung Để đánh giá sự phụ thuộc của từ độ vào nhiệt độ chúng tôi sử dụng hệ đo từ kế mẫu rung (Vibrating Sample Magnetometer - VSM). Nguyên lý hoạt động của hệ đo này là dựa vào hiện tượng cảm ứng điện từ. Mẫu c ần đo đ ược đ ặt
  8. 8 trong từ trường ngoài do nam châm điện gây ra. Mômen từ của mẫu được xác đ ịnh dựa vào suất điện động cảm ứng sinh ra do sự dịch chuyển tương đối giữa mẫu và cuộn dây thu tín hiệu. 2.3.2. Phép đo từ trễ trên hệ từ trường xung Từ các đường từ trễ đo trên hệ từ trường xung có thể xác định được các đại lượng đặc trưng quan trọng như: H c, Ms, Mr và (BH)max. Hệ được thiết kế theo nguyên tắc nạp - phóng điện qua bộ tụ điện và cuộn dây. Dòng một chi ều n ạp điện cho tụ làm cho tụ tích năng lượng cỡ vài chục kJ. Sau đó dòng điện tồn tại trong thời gian ngắn đã phóng điện qua cuộn dây nam châm L và t ạo trong lòng ống dây một từ trường xung cao. Mẫu đo được đặt tại tâm của cuộn nam châm cùng với hệ cuộn dây cảm biến pick - up. Tín hiệu ở lối ra t ỷ l ệ v ới vi phân t ừ đ ộ và vi phân từ trường sẽ được thu thập, xử lí hoặc lưu trữ cho các mục đích cụ thể. Chương 3. ẢNH HƯỞNG CỦA MỘT SỐ NGUYÊN TỐ LÊN CẤU TRÚC VÀ TÍNH CHẤT TỪ CỦA VẬT LIỆU TỪ CỨNG NANOCOMPOSITE Nd- Fe-B 3.1. Cải thiện vi cấu trúc và ổn định công nghệ chế tạo vât liêu nanocomposite ̣ ̣ ̀ ́ Nd-Fe-B băng cach thêm Nb Hình 3.1 là phổ XRD của các mẫu hợp kim Nd10,5Fe83,5-xNbxB6 (x = 0; 1,5 và 3) được phun băng với tốc độ trống quay v = 30 m/s trước khi ủ nhiệt. So với mẫu không pha Nb thì mẫu pha Nb có cường độ các đỉnh nhiễu xạ yếu dần theo nồng độ Nb, đồng thời khả năng tạo trạng thái VĐH của hợp kim tăng lên. Kết quả đo từ trễ cho thấy mẫu x = 1,5 có đường Hình 3.1. Phổ XRD của mẫu băng cong từ trễ khá trơn nhẵn và có Hc khá Nd10,5Fe83,5-xNbxB6 (x = 0; 1,5 và 3) trước cao (Hc = 7 kOe). Mẫu x = 0 và x = 3 thể khi ủ nhiệt hiện sự đa pha từ và Hc nhỏ. Như vậy, với một nồng độ nhất định, Nb làm giảm kích thước hạt, tăng khả năng tạo trạng thái VĐH trong quá trình nguội nhanh. Đồng thời với tỷ phần thích hợp, Nb có khả năng làm tăng lực kháng từ và độ vuông đường trễ của hợp kim.
  9. 9 15 15 x=0 x =0 10 x = 1.5 x = 1,5 x=3 12 x =3 5 M (d. v. t. y) H c (kOe) 9 0 6 -5 -10 3 -15 -20 -15 -10 -5 0 5 10 15 20 0 625 650 675 700 725 750 775 H (kOe) T (o C) a a) b) Hình 3.4. Cac đường từ trễ của mẫu băng Nd10,5Fe83,5-xNbxB6 (x = 0; 1,5 và 3) đã ủ ở ́ nhiệt độ 675oC trong thời gian 10 phut (a) và lực kháng từ Hc phụ thuộc nhiệt độ ủ Ta ́ Để tăng cường tính từ cứng cho vật liệu chúng tôi đã tiến hành ủ nhiệt các mẫu băng Nd10,5Fe83,5-xNbxB6 (x = 0; 1,5 và 3) trong khoảng nhiệt độ từ 625 ÷ 775oC. Kết quả cho thấy quá trình ủ nhiệt làm cho tính từ cứng trong các mẫu x = 1,5 và x = 3 tăng. Mẫu x = 3 sau ủ nhiệt có Hc lớn nhất (hình 3.4a). Hình 3.4b biểu diễn các giá trị Hc theo Ta của các mẫu cho thấy Nb không chỉ làm tăng lực kháng từ mà còn làm ổn định cấu trúc của hợp kim khi điều kiện chế tạo thay đổi (H c thay đổi rất ít khi Ta thay đổi). Hình 3.6 là các ảnh TEM trường sáng, ảnh SAED và ảnh HRTEM của mẫu được pha Nb với nồng độ là 3%, chúng tôi thấy Nb giúp làm mịn hạt, làm cho các hạt trở nên đồng đều hơn, các biên hạt được phân lập rõ ràng, điều đó giải thích H c của mẫu lớn . a) b)
  10. 10 Hình 3.6. Ảnh TEM trường sáng (a), ảnh HRTEM (b) và ảnh SAED (c) của mẫu Nd10,5Fe80,5Nb3B6 ủ ở nhiệt độ tối ưu. c) Tóm lại với nồng độ Nb trong khoảng 1,5 ÷ 3%, hợp kim có kích thước hạt tinh thể khá đồng đều, cấu trúc vi mô ổn định và lực kháng từ được nâng lên khá cao. 3.2. Nâng cao nhiệt độ Curie cua vât liêu nanocomposite Nd-Fe-B băng cach thêm Co ̉ ̣ ̣ ̀ ́ 3.2.1. Ảnh hưởng của Co lên tính chất từ của hợp kim Nd10,5-xFe82CoxNb1,5 B6 ( x = 0, 2, 4, 6 và 8) Hình 3.7 là giản đồ XRD của mẫu băng Nd10,5-xFe82CoxNb1,5 B6 (x = 0, 2, 4, 6 và 8) khi chưa ủ nhiệt. Trên phổ XRD cho thấy khi nồng độ Co tăng lên, sự kết tinh của hợp kim giảm đáng kể. Nồng độ Co trong khoảng từ 4 ÷ 6% mẫu hầu như ở trạng thái VĐH. Như vậy, với nồng độ thích hợp của Co, cấu trúc VĐH của hợp kim được cải thiện đáng kể, khả năng tạo trạng thái VĐH được tăng lên. Kết quả phân tích tính chất từ của các mẫu băng sau ủ nhiệt cho thấy, nhiệt độ ủ tối ưu của các mẫu là 725oC, quá trình ủ nhiệt cải thiện độ vuông đường trễ của mẫu x = 0, tăng cường tính từ cứng cho các mẫu có nồng độ Co từ 2÷ 4% . 20 x=0 15 x=2 10 x=4 x=6 4πM (kG) 5 0 -5 -10 -15 T = 725oC a -20 -20 -15 -10 -5 0 5 10 15 20 H (kOe) Hình 3.7. Phổ XRD của băng nguội Hinh 3.9. Các đường từ trễ của băng ̀ nhanh Nd10,5-xFe82CoxNb1,5B6 (x = 2, 4, 6 hợp kim Nd10,5-xFe82CoxNb1,5 B6 (x = 0, 2, và 8) với v = 30 m/s. 4 và 6) ủ ở nhiệt độ 725oC.
  11. 11 Hình 3.10 là đường cong từ 1.2 o T = 725 C nhiệt của các mẫu băng hợp kim 1 a 0.8 Nd10,5-xFe82CoxNb1,5B6 sau khi ủ 350 K 0.6 nhiệt. Khi được ủ nhiệt, TC của các M/M 0.4 x=0 x=2 mẫu tăng dần theo nồng độ Co, 0.2 x=4 x=6 khoảng nhiệt độ TC của các mẫu 0 350 400 450 500 550 600 650 700 thay đổi khá rộng từ ∼ 585 đến ∼ T (K) 650 K. Các đường từ nhiệt chưa Hình 3.10. Các đường cong từ nhiệt của giảm về không khi nhiệt độ tăng mẫu Nd10,5-xFe82CoxNb1.5B6 (x = 0, 2, 4, 6 và đến 700 K là do pha từ mềm α-Fe 8) sau khi ủ nhiệt ở 725oC. trong các mẫu có nhiệt độ Curie cao hơn (∼ 1050 K). 3.2.2. Ảnh hưởng của Co lên tính chất từ của hợp kim Nd10,5- x Fe80,5CoxNb3B6 (x = 0, 2, 4 và 6) Ảnh hưởng của Co lên cấu trúc và tính chất từ của vật liệu nanocomposite Nd- Fe-B được tiếp tục nghiên cứu trên hệ hợp kim Nd10,5-xFe80,5CoxNb3B6 (x = 0, 2, 4 và 6). Kết quả phân tích cấu trúc với các tốc độ làm nguội từ 10 m/s đến 40 m/s cho thấy sự hình thành pha phụ thuộc cả vào nồng độ của Co và tốc độ làm nguội. Với x = 0 mẫu kết tinh ngay ở tốc độ làm nguội cao nhất (v = 40 m/s). Với nồng độ Co từ 2 ÷ 6%, tỷ lệ kết tinh của hợp kim giảm đáng kể ở v = 10 và 20 m/s và gần như vô định hình ở v = 40 m/s. Quá trình ủ nhiệt đã làm tăng cường tính từ cứng cho vật liệu. Hình 3.14a biểu diễn sự phụ thuộc của lực kháng từ Hc vào nhiệt độ ủ. Chúng ta có thể thấy rằng, lực kháng từ giảm với nồng độ tăng lên của Co. Tuy nhiên, sản phẩm vẫn cho tích năng lượng cực đại (BH)max lớn (hinh 3.14b). Điều này có thể được giải thích do từ ̀
  12. 12 độ bão hòa cũng như độ từ dư của các hợp kim tăng lên đáng kể với sự gia tăng của nồng độ Co. 10 16 x=0 8 x=0 12 (BH) max (MGOe) x=2 H (kOe) 6 8 x=2 4 c x=4 4 2 x=4 x=6 x=6 0 0 600 650 700 750 800 600 650 700 750 800 o o Ta ( C) T ( C) a a) b) Hinh 3.14. Sự phụ thuộc của Hc (a) và (BH)max (b) vào nhiệt độ ủ Ta của băng hợp ̀ kim Nd10,5-xFe8,.5CoxNb3B6 (x = 0, 2, 4 và 6). Tóm lại, Co có thể làm tăng khả năng tạo trạng thái VĐH, đ ồng th ời tăng t ừ độ bão hòa và đặc biệt làm tăng nhiệt độ Curie cho vật liệu. 3.3. Tăng cường lực khang từ cua vật liệu nanocomposite Nd-Fe-B băng cach ́ ̉ ̀ ́ thêm Pr và Dy 3.3.1. Ảnh hưởng của Pr lên tính chất từ của hệ vật liệu nanocomposite Nd-Fe-B Mẫu băng Nd4-xPrxFe78B18 (x = 0, 1, 2, 3 và 4) được phun với tốc độ trống quay v = 10 m/s.. 3.5 15 3 (MGOe) 10 H (kOe) 2.5 max c x=1 x=1 (BH) 5 x=2 x=2 2 x=3 x=3 x=4 x=4 1.5 0 625 650 675 700 625 650 675 700 o Ta ( C) T (oC) a a) b) Hình 3.20. Sự phụ thuộc của Hc (a), và (BH)max (b) vào nhiệt độ ủ Ta của hợp kim Nd4-xPrxFe78B18 (x =1, 2, 3 và 4). Phân tích phổ XRD cho thấy các mẫu trước khi ủ nhiệt cho thấy các mẫu hầu như ở trạng thái VĐH và kết quả đo từ trễ cũng chỉ ra các mẫu thể hiện tính từ mềm. Sau ủ nhiệt tính chất từ của các mẫu thay đổi đáng kể. Hình 3.20 biểu diễn sự phụ
  13. 13 thuộc của Hc và (BH)max vào nhiệt độ ủ. Ta nhận thấy, nhiệt độ ủ tối ưu của các mẫu từ 650oC ÷ 675oC. Nhìn chung, lực kháng từ đã đạt 4 được trên 3 kOe và tích năng lượng (BH)max 3 vượt quá 12 MGOe trên các hợp kim có tỉ H (kOe) phần Pr/Nd bằng 1/4 và 2/4. Như vậy, 2 x =1 c x =2 việc pha thêm Pr đã tăng cường đáng kể 1 x =3 x =4 tính chất từ cho vật liệu. 0 0 5 10 15 20 Khảo sát ảnh hưởng của thời gian ủ ta (min.) nhiệt lên tính chất từ của vật liệu cho thấy, khoảng thời gian ủ mà tính chất từ Hình 3.21. Sự phụ thuộc của lực thay đổi không nhiều là từ 5 dến 15 phút kháng từ Hc vào thời gian ủ ta của (hình 3.21). Tuy vậy, thời gian tối ưu là hợp kim Nd4-xPrxFe78B18 (x =1, vào khoảng 10 phút. 2, 3 và 4) 3.3.2. Ảnh hưởng của Dy lên tính chất từ của hệ vật liệu nanocomposite Nd-Fe-B Hình 3.22 cho thấy các đường từ trễ của các mẫu băng Nd4-xDyxFe78B18 (x = 0,25; 0,5; 0,75 và 1) ủ nhiệt ở 650 oC trong thời gian 10 phút. Ta thấy rằng tính từ cứng của hợp kim đã được tăng cường đáng kể. Lực kháng từ của tất c ả các m ẫu này đã vượt trên 3 kOe, tăng khoảng hơn 30% so với mẫu chưa có Dy. Tích năng lượng (BH)max của các mẫu có nồng độ Dy bằng 0,25; 15 0.25 0.5 0,5; 0,75 và 1% lần lượt là 12,7; 15,6; 10 0.75 1 5 12,3 và 10,1 MGOe. (BH)max ở mẫu với 4πM (kG) 0 x = 0,5 tăng khoảng 50% so với mẫu -5 không pha Dy. -10 Ảnh hưởng của Dy lên hệ hợp -15 -10 -5 0 5 10 kim nhiều thành phần Nd4,5- H (kOe) x DyxFe80,5Co6Nb3B6 (x = 0,25; 0,5; 0,75 và 1) cũng đã được nghiên cứu. Khi ủ Hình 3.22. Đường từ trễ của các mẫu ở nhiệt độ 750oC, tính từ cứng của 2 băng Nd4-xDyxFe78B18 (x = 0,25; 0,5; 0,75 mẫu có nồng độ Dy 0,25% và 0,5% đã và 1) ủ nhiệt ở 650oC trong 10 phút. trở nên khá tốt. Hc ~ 3,1 kOe, lớn hơn khá nhiều so với mẫu Nd 4,5Fe80,5Co6Nb3B6
  14. 14 không chứa Dy (~ 2,5 kOe). Tích năng lượng (BH)max của hai mẫu có nồng độ Dy 0,25 và 0,5 % tương ứng là 11,3 và 13,5 MGOe; vượt qua giá trị tối ưu của m ẫu không chứa Dy. Tóm lại, việc pha thêm Dy với vật liệu có t ổng n ồng đ ộ đ ất hi ếm th ấp cho thấy Hc và (BH)max được tăng cường. Hc và (BH)max của vật liệu có thể được tăng đáng kể (trên 20%) chỉ với một nồng độ khá nhỏ (dưới 0,5%) của Dy. 3.4. Tỉ phân Fe/B tôi ưu cua vật liệu nanocomposite Nd-Fe-B với cac nông đô ̣ ̀ ́ ̉ ́ ̀ ́ ́ ́ đât hiêm khac nhau a) b) c) d) Hình 3.27. Hc phụ thuộc vào Ta của hợp kim (Nd0,5Pr0,5)6+xNb1,5Fe88,5-x-yB4+y với x = 0 (a), x = 2 (b), x = 4 (c) và x = 6 (d). Tỉ phần Fe/B thích hợp với từng nồng độ đất hiếm có thể mang lại cho hệ hợp kim một cấu trúc vi mô và tính chất từ như mong muốn. Ảnh hưởng của tỉ phần Fe/B và các điều kiện công nghệ lên cấu trúc và tính chất từ của vật liệu nanocomposite có nồng độ đất hiếm khác nhau được nghiên cứu trên hệ vật liệu (Nd0,5Pr0,5)6+xNb1,5Fe88,5- B4+y (x = 0 ÷ 6, y = 0 ÷ 10) chế tạo bằng phương pháp phun băng nguội nhanh sau đó x-y ủ nhiệt.
  15. 15 Với mỗi một nồng độ đất hiếm, chúng tôi tìm ra được một tỉ lệ Fe/B thích hợp để đạt được các thông số từ cứng lớn nhất (hình 3.27). Lực kháng từ của mẫu hợp kim tăng với sự tăng của nồng độ đất hiếm. Nhiệt độ ủ tối ưu của các mẫu hợp kim giảm từ 750oC xuống 675oC khi nồng độ đất hiếm tăng từ 6% lên 12%. Bằng cách lựa chọn hợp phần, lực kháng từ Hc và tích năng lượng (BH)max có thể được thay đổi trong các khoảng tương ứng là 14,5 kOe và 16 MGOe (bảng 3.8). Bảng 3.8. Tích năng lượng cực đại (BH)max (MGOe) của hệ hợp kim (Nd0,5Pr0,5)6+xNb1,5Fe88,5-x-yB4+y (x =0 ÷ 6, y = 0 ÷12) ủ ở các nhiệt độ khác nhau Ta (oC) RE 650 675 700 725 750 775 Fe/B 88,5/4 - - 4,8 7,0 8,1 7,3 86,5/6 - - 5,1 8,5 8,7 8,3 84,5/8 - - 6,5 11,0 13,1 10,4 82,5/10 - - 3,2 5,6 7,8 6,1 6 80,5/12 - - 3,0 5,4 7,2 5,6 78,5/14 - - 2,8 3,7 6,0 5,0 86,5/4 1,8 3,1 6,9 7,9 3,4 3,0 84,5/6 2,0 4,9 7,7 11,0 9,4 7,4 82,5/8 10,8 13,6 14,3 16,0 13,5 10,8 80,5/10 7,6 11,3 12,6 12,7 10,0 7,5 8 78,5/12 8,0 9,5 10,7 11,1 10,2 10,8 76,5/14 6,1 7,4 8,7 10,5 8,3 9,6 84,5/4 7,2 10,6 10,6 9,7 - - 82,5/6 10,2 13,5 12,0 10,7 - - 80,5/8 10,7 14,1 13,4 11,7 - - 78,5/10 14,9 15,2 13,5 12,1 - - 10 76,5/12 11,3 9,9 9,0 8,8 - - 74,5/14 5,3 5,6 6,5 5,3 - -
  16. 16 82,5/4 12,3 12,9 11,1 10,2 - - 80,5/6 12,2 12,9 12,0 9,8 - - 78,5/8 12,0 12,8 12,4 10,5 - - 12 76,5/10 13,0 13,4 11,5 11,0 - - 74,5/12 13,8 15,0 10,6 9,7 - - 72,5/14 9,6 8,1 7,8 7,4 - - Chương 4. ẢNH HƯỞNG CỦA CÔNG NGHỆ CHẾ TẠO LÊN TÍNH CHẤT TỪ CỦA VẬT LIỆU NANOCOMPOSITE Nd-Fe-B 4.1. Ảnh hưởng cua hợp phần và tốc độ làm ngu ội lên nhi ệt đ ộ ủ tôi ưu cua ̉ ́ ̉ vật liệu nanocomposite Nd-Fe-B Hình 3.29a biểu diễn sự phụ thuộc của lực kháng từ Hc vào nhiệt độ ủ tạo pha tinh thể Ta của hợp kim Nd4Fe78B18 với các tốc độ làm nguội khác nhau. Chúng tôi nhận ra rằng nhiệt độ ủ tối ưu của hợp kim tăng từ 650 oC đến 700oC khi tốc độ trống quay giảm từ 40 m/s đến 20 m/s. 10 2 9.5 1.6 9 H (kOe) H (kOe) 8.5 1.2 c c 8 40 m/s 0.8 30 m/s 7.5 20 m/s 20 m/s 40 m/s 0.4 7 600 625 650 675 700 725 625 650 675 700 725 750 o o T ( C) T ( C) a a a) b) Hình 3.29. Sự phụ thuộc của lực kháng từ Hc vào nhiệt độ ủ tạo pha tinh thể Ta của hợp kim Nd4Fe78B18 (a) và Nd10,5Fe80,5Nb3B6 (b) với tốc độ trống quay 15 x = 6 x = 8 khác nhau. x x = = 10 12 10 H (kOe) Hình 3.29b cho thấy sự phụ thuộc c của lực kháng từ Hc vào nhiệt độ ủ Ta của 5 mẫu hợp kim Nd10,5Fe80,5Nb3B6 với các tốc 0 độ làm nguội khác nhau. Trong hệ mẫu 650 700 o 750 800 T ( C) a này chúng tôi cũng thấy rằng nhiệt độ ủ Hình 3.31. Sự phụ thuộc của lực tối ưu tăng khi giảm tốc độ làm nguội. kháng từ Hc vào nhiệt độ ủ Ta của hệ mẫ u (Nd 0,5 Pr0,5 )6+x Nb 1,5 Fe88,5-x- y B4+y (x = 0, 2, 4 và 6).
  17. 17 Khi nghiên cứu hệ mẫu (Nd0,5Pr0,5)6+xNb1,5Fe88,5-x-yB4+y (x = 0 ÷ 6, y=0÷ 10), chúng tôi nhận thấy rằng với sự tăng nồng độ đ ất hi ếm không ch ỉ làm tăng lực kháng từ Hc mà còn giảm nhiệt độ ủ tạo pha tinh th ể t ối ưu c ủa v ật li ệu t ừ 750oC đến 650oC (hình 3.31). Đối với các hệ hợp kim chứa Pr, Co và Nb chúng tôi nhận thấy rằng nhiệt độ ủ tối ưu giảm khi n ồng độ Pr tăng và tăng lên khi tăng nồng độ Co và Nb. 4.2. Nghiên cứu chế tạo vật liệu nanocomposite Nd-Fe-B bằng phương pháp nghiền cơ năng lượng cao Khảo sát ảnh hưởng của kích thước hạt và chế độ xử lý nhiệt lên cấu trúc và tính chất từ của nam châm đàn hồi Nd2Fe14B/α-Fe với hợp phần danh định là Nd12Fe82B6. Phân tích XRD cho thấy khi tăng thời gian nghiền thì cường độ đỉnh nhiễu xạ giảm mạnh chứng tỏ kích thước hạt giảm (hình 3.34). Ở thời gian nghiền Hình 3.34. Phổ XRD của các mẫu 7 h, các đỉnh nhiễu xạ đặc trưng cho pha Nd-Fe-B được nghiền trong các khoảng Nd2Fe14B chỉ còn lại rất ít và hầu như thời gian khác nhau. không còn quan sát thấy ở các thời gian nghiền lâu hơn (có sự phân hủy cấu trúc pha). a) b)
  18. 18 c) d) Hình 3.35. Ảnh SEM của các mẫu Nd-Fe-B được nghiền trong các khoảng thời gian khác nhau: 3 h (a), 5 h (b), 7 h (c) và 10 h (d). Trên ảnh SEM (hình 3.35) cho thấy kích thước hạt tinh thể vào khoảng 50 - 100 nm với thời gian nghiền 3 h và giảm xuống khoảng 30 - 50 nm với thời gian nghiền là 5 h, kích thước hạt tinh thể vào cỡ 10 - 20 nm với thời gian nghi ền là 7 h. Nh ư v ậy, đ ể đạt được kích thước hạt một vài chục nm, đủ để xảy ra hiệu ứng trao đổi đàn hồi, cần một khoảng thời gian nghiền không quá dài. Ở thời gian nghiền lớn hơn các hạt tinh thể bị kết đám, rất khó quan sát được các hạt riêng rẽ, đồng thời xuất hiện sự phân pha trong vật liệu. Khi chưa ủ tất cả các hợp kim thể hiện tính từ mềm. Sau khi ủ nhiệt một số mẫu hợp kim lại biểu lộ tính từ cứng khá cao (h ình 3.37). Ở nhiệt độ ủ 600oC mẫu nghiền 7 h cho lực kháng từ cao nhất đạt 5,2 kOe và tích năng lượng cực đại (BH) max ~ 16,7 MGOe. Để khảo sát ảnh hưởng của các 15 500 C o thông số trong quá trình nghiền như: môi o 10 600 C o 700 C trường nghiền, thời gian nghiền, tỉ lệ o 5 800 C 4πM (kG) bi/bột lên cấu trúc và tính chất từ của vật 0 -5 liệu Nd-Fe-B chúng tôi đã lựa chọn hợp -10 phần danh định là Nd16,5Fe77B6,5 để khảo -15 sát. Kết quả phân tích cấu trúc cho thấy -15 -10 -5 0 H (kOe) 5 10 15 để giảm thời gian nghiền thì tỉ lệ bi/bột Hình 3.37. Đường cong từ trễ của các phải tăng lên. Tuy nhiên do khối lượng bi mẫu được nghiền 7 h và ủ ở các nhiệt không đổi nên lượng mẫu chế tạo được độ khác nhau trong thời gian 20 phút. sẽ ít hơn. Khi nghiền trong xăng và heptan thì cấu trúc của mẫu thay đổi không đáng kể. Điều này cho th ấy dung môi heptan hoặc xăng là lựa chọn tốt để khắc phục nhược điểm phân hủy cấu trúc của vật liệu đã chế tạo như nghiền trong khí Ar. Ảnh hưởng của th ời gian nghi ền lên kích thước hạt cho thấy khi nghiền trong dung môi kích th ước h ạt gi ảm mạnh khi tăng thời gian nghiền đến 7 h. Tăng thời gian nghiền nhiều hơn nữa thì kích thước hạt cũng giảm rất ít. 4.3. Thử nghiệm chế tạo nam châm kết dính Nd-Fe-B Quy trình chế tạo các nam châm kết dính được thực hiện theo các bước sau đây:
  19. 19 - Chế tạo vật liệu theo phương pháp phun băng nguội nhanh với tốc độ v = 30 m/s. - Xử lý nhiệt các băng VĐH ở nhiệt độ tối ưu. Chế độ xử lý nhiệt cụ thể cho 3 hệ vật liệu được chế tạo thử nghiệm mẫu lần lượt là: i) Ta = 675oC, ta = 10 phút cho hệ Nd2Pr2Fe78B18, ii) Ta = 625oC, ta = 10 phút cho hệ Nd10,5Nb1,5Fe82B6, iii) Ta = 625oC, ta = 10 phút cho hệ (Nd0,5Pr0,5)10,5Fe82Nb1,5B6. - Nghiền các băng đã được xử lý nhiệt thành bột, sử dụng rây bột cỡ 0,4 mm. - Trộn bột hợp kim với keo theo tỷ lệ 0,25 ml keo/1 g bột rồi khuấy liên t ục cho đến khi keo khô. - Cho vào khuôn ép đường kính 16 mm và ép thành viên có chiều cao cỡ 15 - 20 mm với lực ép 7,5 tấn/cm2. Quá trình ép sử dụng hai chế độ ép nóng và ép nguội. Khi ép nóng, nhiệt độ của khuôn được nâng tới ~ 300 oC trong khoảng thời gian 5 phút với tôc độ gia nhiêt luc đâu là 50 o/phut sau khi đat nhiêt độ 260 oC giam tôc độ gia nhiêt ́ ̣ ́ ̀ ́ ̣ ̣ ̉ ́ ̣ xuông 20o/phut đên 310oC thì tăt lo. Đối với các viên nam châm ép nguội còn phải ́ ́ ́ ́ ̀ qua một quá trình sấy ở 250oC trong 30 phút. - Nạp từ các viên nam châm ở từ trường ~ 5 T. Hình 3.45 cho thấy các viên nam châm kết dính chế tạo được. 12 ep lanh ep nong 8 4 4πM(kG) 0 -4 -8 -12 -15 -10 -5 0 5 10 15 H (kOe) Hình 3.45. Các viên nam châm kết dính Hình 3.46. Đường cong từ trễ của nam chế tạo được. châm Nd2Pr2Fe78B18 được ép nóng và ép nguội. Hình 3.46 là đường cong từ trễ của hệ mẫu Nd 2Pr2Fe78B18 khi ép nóng và ép nguội. Ta thấy rằng lực kháng từ của nam châm không thay đổi nh ưng từ độ bão hòa và từ độ dư của nam châm tăng rõ rệt bằng cách ép nóng. Điều đó là do mật độ khối của nam châm được tăng lên.
  20. 20 10 10 M M 8 B 8 B BH BH M, B (kG) 6 6 M, B (kG) 4 4 2 2 0 0 -12 -10 -8 -6 -4 -2 0 -12 -10 -8 -6 -4 -2 0 H (kOe) H (kOe) a) b) Hình 3.47. Các đường đặc trưng của hai nam châm đàn hồi chế tạo được: Nd10,5Nb1,5Fe82B6 (a) và (Nd0,5Pr0,5)10,5Fe82Nb1,5B6 (b). Các đường đặc trưng từ độ Mv, cảm ứng từ B và tích năng lượng BH của nam châm đàn hồi đã chế tạo của hai hệ mẫu Nd 10,5Nb1,5Fe82B6 và (Nd0,5Pr0,5)10,5Fe82Nb1,5B6 được chỉ ra trên hình 3.47. Các điều kiện công nghệ và thông số từ của 3 loại nam châm đàn hồi này được liệt kê trên bảng 3.10. Bảng 3.10. Các điều kiện công nghệ và thông số từ thu được cho 3 loại nam châm đàn hồi. Lực ép K.L. B Hc Kiểu MHc Br (BH)max Hệ mẫu (Tấn/cm2 riêng (kOe ép (kOe) (kG) (MGOe) ) (g/cm3) ) Nd2Pr2Fe78B18 lạnh 7,5 5,6 3,4 2,7 7,4 6,4 nóng 7,5 5,8 3,3 2,7 8,4 7,8 Nd10,5Nb1,5Fe82B6 lạnh 7,5 5,6 7,5 4,8 7,3 9,6 nóng 7,5 5,9 7,5 5,0 7,8 10,7 (Nd0,5Pr0,5)10,5 Nb1,5Fe82B6 nóng 7,5 6,0 8,0 5,1 7,8 11,2 Ta thấy rằng trên cả 3 hợp phần đã nghiên cứu thì ch ế đ ộ ép nóng đ ều làm tăng mật độ khối của nam châm đàn hồi và dẫn đến làm tăng tích năng l ượng (BH)max của nam châm. Tuy nhiên, mật độ khối cao nhất mới chỉ đạt ~ 6 g/cm 3 ứng với tích năng lượng cực đại (BH)max đạt 11,2 MGOe. Tuy nhiên theo kết quả đã nghiên cứu thì mật độ khối của nam châm có thể đạt ~ 6,4 g/cm 3 bằng phương pháp ép nóng. Điều này có thể là do kích thước của các h ạt b ột h ợp kim ch ưa đ ạt giá trị tối ưu.
nguon tai.lieu . vn