Xem mẫu

  1. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit CHUYÊN ĐỀ MŨ VÀ LOGARIT Hàm số mũ I. • y = a x ; TXĐ D=R • Bảng biến thiên a>1 01 0
  2. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit Với a>0, b>0; m, n∈R ta có: an 1 1 − − = a n − m ;( n =a m ; a0=1; a 1= ); anam =an+m; m a a a n an a m   = m; (an)m =anm ; n nn (ab) =a b ; = n am . a n b b 2. Công thức logarit: logab=c⇔ac=b (00) Với 00; 0 0] . +logaf(x)= logag(x)⇔ f ( x ) > 0 +logaf(x)=g(x)⇔  f ( x) = a g( x)  f ( x) = g ( x)  4Đặt ẩn phụ. 2. Bất phương trình mũ−logarit a. Bất phương trình mũ: a > 0 a > 0 4 af(x)>ag(x) ⇔ 4 af(x)≥ ag(x) ⇔ ; . ( a − 1) [ f ( x ) − g ( x ) ] > 0 ( a − 1) [ f ( x ) − g ( x ) ] ≥ 0 Đặt biệt: ⇔ * Nếu a>1 thì: af(x)>ag(x) f(x)>g(x); af(x)≥ag(x) ⇔ f(x)≥g(x). ⇔ f(x)< g(x); * Nếu 0logag(x)⇔ f ( x ) > 0, g ( x ) > 0 4logaf(x)≥logag(x)⇔  f ( x ) > 0, g ( x ) > 0 ; . ( a − 1) [ f ( x ) − g ( x ) > 0] ( a − 1) [ f ( x ) − g ( x ) ≥ 0]   Đặt biệt: ---------------------------------------------------------------------------------------------------------------------------------- 2 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
  3. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit  f ( x) > g( x) ⇔ + Nếu a>1 thì:  logaf(x)>logag(x) ; g ( x) > 0  f ( x) < g( x) + Nếu 0 0 ============================ MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH−BẤT PHƯƠNG TRÌNH HỆ PHƯƠNG TRÌNH MŨ-LOGARIT I. Biến đổi thành tích ( ) − 1 . ( 22 x − 4 ) = 0 . 2 2 2 +x −x −x − 4.2 x − 22 x + 4 = 0 � 2 x x Ví dụ 1: Giải phương trình: 2 Nhận xét: Mặc dù cùng cơ số 2 nhưng không thể biến đổi để đặt được ẩn phụ do đó ta ph ải phân ( ) − 1 . ( 22 x − 4 ) = 0 . Đây là phương trình tích đã biết cách giải. 2 −x x tích thành tích: 2 ( ) Ví dụ 2: Giải phương trình: 2 ( log 9 x ) = log 3 x.log 3 2 2x + 1 − 1 . Nhận xét: Tương tự như trên ta phải biến đổi phương trình thành tích: ( ) � 3 x − 2 log 3 2 x + 1 − 1 � 3 x = 0 . Đây là phương trình tích đã biết cách giải. log .log � � Tổng quát: Trong nhiều trường hợp cùng cơ số nhưng không th ể bi ến đ ổi đ ể đ ặt ẩn ph ụ đ ược thì ta biến đổi thành tích. II. Đặt ẩn phụ-hệ số vẫn chứa ẩn Ví dụ 1: Giải phương trình: 9 x + 2( x − 2)3x + 2 x − 5 = 0 . Đặt t = 3x (*), khi đó ta có: t 2 + 2 ( x − 2 ) t + 2 x − 5 = 0 � t = −1, t = 5 − 2 x . Thay vào (*) ta tìm được x. Lưu ý: Phương pháp này chỉ sử dụng khi ∆ là số chính phương. Ví dụ 2: Giải phương trình: log 3 ( x + 1) + ( x − 5 ) log 3 ( x + 1) − 2 x + 6 = 0 . Đặt t = log3(x+1), ta có: 2 t 2 + ( x − 5 ) t − 2 x + 6 = 0 � t = 2, t = 3 − x ⇒ x = 8 và x = 2. III. Phương pháp hàm số Các tính chất: Tính chất 1: Nếu hàm f tăng (hoặc giảm) trên khoảng (a;b) thì phương trình f(x)=k (k∈R) có không quá một nghiệm trong khoảng (a;b). Tính chất 2: Nếu hàm f tăng (hoặc giảm) trên khoảng ( a;b) thì ∀u, v ∈(a,b) ta có f (u ) = f ( v ) � u = v . Tính chất 3: Nếu hàm f tăng và g là hàm hằng hoặc giảm trong khoảng (a;b) thì phương trình f(x)=g(x) có nhiều nhất một nghiệm thuộc khoảng (a;b). Định lý Lagrange: Cho hàm số F(x) liên tục trên đoạn [a;b] và tồn tại F'(x) trên khoảng (a;b) thì F ( b) − F ( a ) ∃ c ∈ ( a; b ) : F ' ( c ) = . Khi áp dụng giải phương trình nếu có F(b) – F(a) = 0 thì b−a ∃c � a; b ) : F ' ( c ) = 0 � F ' ( x ) = 0 có nghiệm thuộc (a;b). ( Định lý Rolle: Nếu hàm số y=f(x) lồi hoặc lõm trên miền D thì phương trình f(x)=0 sẽ không có quá hai nghiệm thuộc D. ( Xem thêm bài viết “ Nghệ thuật giải toán phổ thông” của tác giả.) Ví dụ 1: Giải phương trình: x + 2.3log2 x = 3 . Hướng dẫn: x + 2.3log2 x = 3 � 2.3log2 x = 3 − x , vế trái là hàm đồng biến, vế phải là hàm nghịch bi ến nên phương trình có nghiệm duy nhất x=1. Ví dụ 2: Giải phương trình: 6 x + 2 x = 5 x + 3x . Phương trình tương đương 6 x − 5 x = 3x − 2 x , giả sử phương trình có nghiêm α. Khi đó: 6 α − 5 α = 3α − 2 α . ---------------------------------------------------------------------------------------------------------------------------------- 3 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
  4. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit Xét hàm số f ( t ) = ( t + 1) − t , với t > 0. Ta nhận thấy f(5) = f(2) nên theo định lý lagrange tồn tại α α ( c α −1 − cα −1 � 0 � α = 0, α = 1 , thử lại ta thấy x = 0, x = 1 là f ' ( c ) = 0 � α � + 1) ( 2;5) sao cho: = c � � nghiệm của phương trình. 2 Ví dụ 3: Giải phương trình: −2 x + 2 x −1 = ( x − 1) 2 . Viết lại phương trình dưới dạng −x + x 2 − x , xét hàm số f ( t ) = 2 + t là hàm đồng biến trên R ( ??? ). Vậy phương t 2 2 x −1 + x − 1 = 2 x −x trình được viết dưới dạng: f ( x − 1) = f ( x − x ) � x − 1 = x − x � x = 1 . 2 2 Ví dụ 4: Giải phương trình: 3x + 2 x = 3 x + 2 . Dễ dàng ta tìm được nghiệm: x = 0 và x = 1. Ta cần chứng minh không còn nghiệm nào khác. Xét hàm số f ( x ) = 3x + 2 x − 3x − 2 � f '' ( x ) = 3x ln 2 3 + 2 x ln 2 2 > 0 � Đồ thị của hàm số này lõm, suy ra phương trình không có quá hai nghiệm. y e x = 2007 − y −12 Ví dụ 5: Chứng minh hệ phương trình có đúng hai nghiệm thỏa mãn x > 0, y > x e = 2007 − y x2 − 1 0. x HD: Dùng tính chất 2 để chỉ ra x = y khi đó xét hàm số f ( x ) = e + − 2007 . x x2 − 1 Nếu x < −1 thì f ( x ) < e − 2007 < 0 suy ra hệ phương trình vô nghiệm. −1 Nếu x > 1 dùng định lý Rôn và chỉ ra với x0 = 2 thì f(2) < 0 để suy ra điều phải chứng minh. b a 1 1 Ví dụ 6: Cho a ≥ b > 0 . Chứng minh rằng � a + a � � b + b �(ĐH Khối D−2007) 2 2 � �� � 2�� 2� � 1 1 ln � a + a � ln � b + b � 2 2 � � � � 2 � Xét hàm số HD: BĐT �+b�+ 2a . 1� 1� 2� � � ln � a ln � b 2 � a� � � a b 2b � 2� � � �x + 1 � ln �2 � 2 x �với x > 0 f ( x) = � x Suy ra f’(x) < 0 với mọi x > 0, nên hàm số nghịch biến vậy với a ≥ b > 0 ta có f (a ) ≤ f ( b ) (Đpcm). IV. Một số bài toán (đặc biệt là các bài logarrit) ta thường phải đưa về phương trình – hệ phương trình – bất phương trình mũ rồi sử dụng các phương pháp trên. 1.Dạng 1: Khác cơ số: Ví dụ: Giải phương trình log7 x = log3 ( x + 2) . Đặt t = log 7 x � x = 7t . Khi đó phương trình trở t t �7� 1 7t + 2 � 1 = � �+ 2. � � t = log 3 ( 7t + 2) � 3t = thành: . �� 3� 3 �� � 2.Dạng 2: Khác cơ số và biểu thức trong dấu log phức tạp Ví dụ 1: Giải phương trình log 6 ( x 2 − 2 x − 2) = 2 log 5 ( x 2 − 2 x − 3 ) . 4 Đặt t = x2 – 2x – 3 ta có log 6 ( t + 1) = log 5 t . ( ) log x Ví dụ 2: Giải phương trình log 2 x + 3 6 = log 6 x . Đặt t = log 6 x , phương trình tương t 3 đương 6t + 3t = 2t � 3t + � � = 1 . �� 2 �� 3. Dạng 3: ( Điều kiện: b = a + c ) logb ( x +c ) =x a Ví dụ 1: Giải phương trình 4log7 ( x +3) = x . Đặt t = log 7 ( x + 3) � 7t = x + 3 , ---------------------------------------------------------------------------------------------------------------------------------- 4 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
  5. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit t t 4 1 phương trình tương đương 4t = 7t − 3 � � �+ 3. � �= 1 . �� �� 7 7 �� �� Ví dụ 2: Giải phương trình 2 log3 ( x +5 ) = x + 4 . Đặt t = x+4 . phương trình tương đương: 2 log3 ( t +1) = t Ví dụ 3: Giải phương trình 4log3 ( x +1) − ( x − 1) 2log3 ( x +1) − x = 0 . =c log ( dx + ) + x +β , với d = ac + α , e = bc + β 4. Dạng 4: s α ax +b e s Phương pháp: Đặt ay + b = log s (dx + e) rồi chuyển về hệ hai phương trình, lấy phương trình hai trừ phương trình một ta được: s ax +b + acx = s ay +b + acy . Xét f ( t ) = s at +b + act . Ví dụ: Giải phương trình 7 x −1 = 6 log 7 (6 x − 5) + 1 . Đặt y − 1 = log 7 ( 6 x − 5) . Khi đó chuyển thành hệ � = 6 ( y − 1) + 1 7 x −1 7 x −1 � = 6y − 5 � 7 x −1 + 6 x = 7 y −1 + 6 y . Xét hàm số f ( t ) = 7t −1 + 6t suy ra x=y, � � y −1 � y − 1 = log 7 ( 6 x − 5 ) 7 = 6x − 5 Khi đó: 7 x −1 − 6 x + 5 = 0 . Xét hàm số g ( x ) = 7 x −1 − 6 x + 5 . Áp dụng định lý Rolle và nhẩm nghiệm ta được 2 nghiệm của phương trình là: x = 1, x = 2. 5. Dạng 5: Đặt ẩn phụ chuyển thành hệ phương trình. 2x 8 18 + = x−1 1− x Ví dụ: Giải phương trình x −1 x 2 +1 2 + 2 2 + 2 + 2 8 1 18 HD: Viết phương trình dưới dạng x −1 + 1− x = x −1 1− x , đặt 2 +1 2 + 2 2 + 2 + 2 u = 2 x −1 + 1, v = 21− x + 1.u , v > 0 . 81 18 += Nhận xét: u.v = u + v. Từ đó ta có hệ: u v u + v u.v = u + v BÀI TẬP ĐỀ NGHỊ Bài 1: Giải các phương trình sau: a. ( 2 + 3 ) + ( 2 − 3 ) − 4 = 0 x x ( ) +( ) x x 2− 3 2+ 3 =4 b. c. ( 7 + 4 3 ) − 3 ( 2 − 3 ) + 2 = 0 x x d. ( 3 + 5 ) + 16 ( 3 − 5 ) = 2 x +3 x x ( )( ) x x ĐS: x=1, x=−1. 2 −1 + 2 + 1 − 2 2 = 0 (ĐH_Khối B 2007) e. f. 3.8x+4.12x−18x−2.27x=0. (ĐH_Khối A 2006) ĐS: x=1. g. 2 x + x − 4.2 x − x − 22 x + 4 = 0 (ĐH_Khối D 2006) 2 2 ĐS: x=0, x=1. ĐS: x=−1, x=2. k. 2 x − x − 22+ x − x = 3 (ĐH_Khối D 2003) 2 2 i. 3.16 x + 2.8 x = 5.32 x 1 1 1 j. 2.4 x + 6 x = 9 x Bài 2: Giải các hệ phương trình sau: 5 x + y = 125 4 x+ y = 128 a. b. 53 x −2 y −3 = 1 2 4( x − y ) −1 = 1 2 x + 2 y = 12 c. x+ y =5 ---------------------------------------------------------------------------------------------------------------------------------- 5 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
  6. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit log 2 ( x + y ) = 1 + log ( xy ) 2 2 2 (ĐH_Khối A 2009) ĐS: (2;2), (−2;−2) d. x 2 − xy + y 2 = 81 3 x −1 + 2 − y =1 (ĐH_Khối B 2005) ĐS: (1;1), (2;2). e. 3log 9 ( 9 x 2 ) − log 3 y 3 = 3 1 log 1 ( y − x ) − log 4 =1 y (ĐH_Khối A 2004) ĐS: (3;4) f. 4 x + y = 25 2 2 23 x = 5 y 2 − 4 y (ĐH_Khối D 2002) ĐS: (0;1), (2;4). g. 4 x + 2 x +1 =y 2 +2 x Bài 3: Giải và biện luận phương trình: a . ( m − 2 ) .2 x + m.2 − x + m = 0 . b . m.3x + m.3− x = 8 . Bài 4: Cho phương trình log 3 x + log3 x + 1 − 2m − 1 = 0 (m là tham số). (ĐH_Khối A 2002) 2 2 a. Giải phương trình khi m=2. b. Tìm m để phương trình có ít nhất một nghiệm thuộc đoạn � 3 � 1; 3 . �� , b. 0 ≤ m ≤ 2 ĐS: a. x = 3 3 ( ) x −1 x Bài 5: Cho bất phương trình 4 − m. 2 + 1 > 0 16 a. Giải bất phương trình khi m= . 9 b. Định m để bất phương trình thỏa ∀x R . Bài 6: Giải các phương trình sau: a. log5 x = log5 ( x + 6 ) − log5 ( x + 2 ) b. log 5 x + log 25 x = log 0,2 3 ( ) x+3 2 d. lg( x 2 + 2 x − 3) + lg c. log x 2 x − 5 x + 4 = 2 =0 x −1 e. log2x−1(2x2+x−1)+logx+1(2x−1)2=4 (ĐH Khối A_2008) ĐS: x=2; x=5/4. f. log 2 ( x + 1) − 6 log 2 x + 1 + 2 = 0 (ĐH_Khối D 2008) ĐS: x=1, x=3. 2 1 g. log 2 ( 4 + 15.2 + 27 ) + 2 log 2 =0 x x (ĐH_Khối D 2007) ĐS: x=log23. 4.2 − 3 x Bài 7: Giải bất phương trình: a. 2 log3 (4 x − 3) + log 1 ( 2 x + 3) 2 (ĐH Khối A_2007) ĐS: 3/4 ≤ x ≤ 3. 3 x2 + x � � < (ĐH_Khối B 2008) ĐS: −4< x < −3, x > 8. b. log 0,7 � 6 log �0 x+4 � � c. log 5 ( 4 + 144 ) − 4 log 5 2 < 1 + log 5 ( 2 + 1) x−2 x (ĐH_Khối B 2006) ĐS: 2 < x < 4. x 2 − 3x + 2 )( (ĐH_Khối D 2008) ĐS: � − 2;1 U 2; 2 + 2 � d. log 1 0 2 . � � x 2 −−−−−−−−−−−−−−−−−−−−−−− ---------------------------------------------------------------------------------------------------------------------------------- 6 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
  7. ĐẠI HỌC SƯ PHẠM HÀ NỘI http://laisac.page.tl Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit ---------------------------------------------------------------------------------------------------------------------------------- 7 Gv: Trần Quang Thuận Tel: 0912.676.613 – 091.5657.952
nguon tai.lieu . vn