Tuyển tập các đề thi đại học 2002 2012 theo các chủ đề

Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ
  Đánh giá    Viết đánh giá
 2      31      0
Mã tài liệu 3l21tq Danh mục Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ Tác giả Nguyễn Tuấn Anh Loại file PDF Số trang 62 Dung lượng 0.34 M Lần tải 2 Lần xem 31
Tài liệu được tải hoàn toàn Tải Miễn phí tại tailieumienphi.vn

Tài liệu tham khảo Tuyển tập các đề thi đại học 2002 2012 theo các chủ đề toán học. chúc các bạn học và ôn thi tuyển sinh cao đẳng, đại học tốt

  1. Nguy n Tu n Anh Tuy n t p các đ thi đ i h c 2002-2012 theo ch đ Trư ng THPT Sơn Tây
  2. M cl c 1 Phương trình-B t PT-H PT-H BPT 3 1.1 Phương trình và b t phương trình . . . . . . . . . . . . . . . . . . 3 1.1.1 Phương trình, b t phương trình h u t và vô t . . . . . . . 3 1.1.2 Phương trình lư ng giác . . . . . . . . . . . . . . . . . . 4 1.1.3 Phương trình,b t phương trình mũ và logarit . . . . . . . . 8 1.2 H Phương trình . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Phương pháp hàm s , bài toán ch a tham s . . . . . . . . . . . . 12 Đáp s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 B t đ ng th c 17 2.1 B t đ ng th c . . . . . . .... . . . . . . . . . . . . . . . . . . 17 2.2 Giá tr nh nh t- Giá tr l n nh t . . . . . . . . . . . . . . . . . . 18 2.3 Nh n d ng tam giác . . . .... . . . . . . . . . . . . . . . . . . 20 Đáp s . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . 20 3 Hình h c gi i tích trong m t ph ng 22 3.1 Đư ng th ng . . . . . . . ... . . . . . . . . . . . . . . . . . . 22 3.2 Đư ng tròn . . . . . . . . ... . . . . . . . . . . . . . . . . . . 25 3.3 Cônic . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . 26 Đáp s . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . 27 4 T h p và s ph c 30 4.1 Bài toán đ m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
  3. 4.2 Công th c t h p . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Đ ng th c t h p khi khai tri n . . . . . . . . . . . . . . . . . . . 31 4.4 H s trong khai tri n nh th c . . . . . . . . . . . . . . . . . . . 32 4.5 S ph c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Đáp s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 Kh o sát hàm s 36 5.1 Ti p tuy n . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 C c tr . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Tương giao đ th . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4 Bài toán khác .. . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Đáp s . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 Hình h c gi i tích trong không gian 44 6.1 Đư ng th ng và m t ph ng . . . . . . . . . . . . . . . . . . . . . 44 6.2 M t c u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.3 Phương pháp t a đ trong không gian . . . . . . . . . . . . . . . 51 Đáp s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Tích phân và ng d ng 57 7.1 Tính các tích phân sau: . . . . . . . . . . . . . . . . . . . . . . . 57 7.2 Tính di n tích hình ph ng đư c gi i h n b i các đư ng sau: . . . . 59 7.3 Tính th tích kh i tròn xoay đư c t o b i hình ph ng (H) khi quay quanh Ox. Bi t (H) đư c gi i h n b i các đư ng sau: . . . . . . . 59 Đáp S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
  4. Chương 1 Phương trình-B t PT-H PT-H BPT 1.1 Phương trình và b t phương trình . . . . . . . . . . . . . . 3 1.1.1 Phương trình, b t phương trình h u t và vô t . . . . . 3 1.1.2 Phương trình lư ng giác . . . . . . . . . . . . . . . . 4 1.1.3 Phương trình,b t phương trình mũ và logarit . . . . . . 8 1.2 H Phương trình . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Phương pháp hàm s , bài toán ch a tham s . . . . . . . . 12 Đáp s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1 Phương trình và b t phương trình 1.1.1 Phương trình, b t phương trình h u t và vô t Bài 1.1 (B-12). Gi i b t phương trình √ √ x + 1 + x2 − 4x + 1 ≥ 3 x. Bài 1.2 (B-11). Gi i phương trình sau: √ √ √ 3 2 + x − 6 2 − x + 4 4 − x2 = 10 − 3x (x ∈ R)
  5. Chương 1.Phương trình-B t PT-H PT-H BPT 4 Bài 1.3 (D-02). Gi i b t phương trình sau: √ (x2 − 3x) 2x2 − 3x − 2 ≥ 0. Bài 1.4 (D-05). Gi i phương trình sau: √ √ x + 2 + 2 x + 1 − x + 1 = 4. 2 Bài 1.5 (D-06). Gi i phương trình sau: √ 2x − 1 + x2 − 3x + 1 = 0. (x ∈ R) Bài 1.6 (B-10). Gi i phương trình sau: √ √ 3x + 1 − 6 − x + 3x2 − 14x − 8 = 0. Bài 1.7 (A-04). Gi i b t phương trình sau: 2(x2 − 16) √ 7−x √ + x−3> √ . x−3 x−3 Bài 1.8 (A-05). Gi i b t phương trình sau: √ √ √ 5x − 1 − x − 1 > 2x − 4. Bài 1.9 (A-09). Gi i phương trình sau: √ √ 2 3 3x − 2 + 3 6 − 5x − 8 = 0. Bài 1.10 (A-10). Gi i b t phương trình sau: √ x− x ≥ 1. 2(x2 − x + 1) 1− 1.1.2 Phương trình lư ng giác √ Bài 1.11 (D-12). Gi i phương trình sin 3x + cos 3x˘ sin x + cos x = 2 cos 2x Bài 1.12 (B-12). Gi i phương trình √ √ 2(cos x + 3 sin x) cos x = cos x − 3 sin x + 1.
  6. Chương 1.Phương trình-B t PT-H PT-H BPT 5 Bài 1.13 (A-12). Gi i phương trình sau: √ 3 sin 2x + cos 2x = 2 cos x − 1 Bài 1.14 (D-11). Gi i phương trình sau: sin 2x + 2 cos x − sin x − 1 √ = 0. tan x + 3 Bài 1.15 (B-11). Gi i phương trình sau: sin 2x cos x + sin x cos x = cos 2x + sin x + cos x Bài 1.16 (A-11). Gi i phương trình 1 + sin 2x + cos 2x √ = 2 sin x sin 2x. 1 + cot2 x Bài 1.17 (D-02). Tìm x thu c đo n [0; 14] nghi m đúng c a phương trình: cos 3x − 4 cos 2x + 3 cos x − 4 = 0. Bài 1.18 (D-03). Gi i phương trình sau: xπ x sin2 ( − ) tan2 x − cos2 = 0. 2 4 2 Bài 1.19 (D-04). Gi i phương trình sau: (2 cos x − 1)(2 sin x + cos x) = sin 2x − sin x. Bài 1.20 (D-05). Gi i phương trình sau: π π 3 cos4 x + sin4 x + cos (x − ) sin (3x − ) − = 0. 4 4 2 Bài 1.21 (D-06). Gi i phương trình sau: cos 3x + cos 2x − cos x − 1 = 0. Bài 1.22 (D-07). Gi i phương trình sau: x2 √ x (sin + cos ) + 3 cos x = 2. 2 2
  7. Chương 1.Phương trình-B t PT-H PT-H BPT 6 Bài 1.23 (D-08). Gi i phương trình sau: 2 sin x(1 + cos 2x) + sin 2x = 1 + 2 cos x. Bài 1.24 (D-09). Gi i phương trình sau: √ 3 cos 5x − 2 sin 3x cos 2x − sin x = 0. Bài 1.25 (D-10). Gi i phương trình sau: sin 2x − cos 2x + 3 sin x − cos x − 1 = 0. Bài 1.26 (B-02). Gi i phương trình sau: sin2 3x − cos2 4x = sin2 5x − cos2 6x. Bài 1.27 (B-03). Gi i phương trình sau: 2 cot x − tan x + 4 sin 2x = . sin 2x Bài 1.28 (B-04). Gi i phương trình sau: 5 sin x − 2 = 3(1 − sin x) tan2 x. Bài 1.29 (B-05). Gi i phương trình sau: 1 + sin x + cos x + sin 2x + cos 2x = 0. Bài 1.30 (B-06). Gi i phương trình sau: x cot x + sin x(1 + tan x tan ) = 4. 2 Bài 1.31 (B-07). Gi i phương trình sau: 2 sin2 2x + sin 7x − 1 = sin x. Bài 1.32 (B-08). Gi i phương trình sau: √ √ sin3 x − 3 cos3 x = sin x cos2 x − 3 sin2 x cos x. Bài 1.33 (B-09). Gi i phương trình sau: √ sin x + cos x sin 2x + 3 cos 3x = 2(cos 4x + sin3 x).
  8. Chương 1.Phương trình-B t PT-H PT-H BPT 7 Bài 1.34 (B-10). Gi i phương trình sau: (sin 2x + cos 2x) cos x + 2 cos 2x − sin x = 0. Bài 1.35 (A-02). Tìm ngi m thu c kho ng (0; 2π ) c a phương trình: cos 3x + sin 3x 5 sin x + = cos 2x + 3. 1 + 2 sin 2x Bài 1.36 (A-03). Gi i phương trình sau: cos 2x 1 + sin2 x − sin 2x. cot x − 1 = 1 + tan x 2 Bài 1.37 (A-05). Gi i phương trình sau: cos2 3x cos 2x − cos2 x = 0. Bài 1.38 (A-06). Gi i phương trình sau: 2(cos6 x + sin6 x) − sin x cos x √ = 0. 2 − 2 sin x Bài 1.39 (A-07). Gi i phương trình sau: (1 + sin2 x) cos x + (1 + cos2 x) sin x = 1 + sin 2x. Bài 1.40 (A-08). Gi i phương trình sau: 1 1 7π − x). + = 4 sin ( 3π sin x 4 sin (x − ) 2 Bài 1.41 (A-09). Gi i phương trình sau: √ (1 − 2 sin x) cos x = 3. (1 + 2 sin x)(1 − sin x) Bài 1.42 (A-10). Gi i phương trình sau: π (1 + sin x + cos 2x) sin (x + ) 1 4 = √ cos x. 1 + tan x 2
  9. Chương 1.Phương trình-B t PT-H PT-H BPT 8 1.1.3 Phương trình,b t phương trình mũ và logarit Bài 1.43 (D-11). Gi i phương trình sau: √ √ log2 (8 − x2 ) + log 1 ( 1 + x + 1 − x) − 2 = 0 (x ∈ R) 2 Bài 1.44 (D-03). Gi i phương trình sau: 2 −x 2 − 22+x−x = 3. 2x Bài 1.45 (D-06). Gi i phương trình sau: 2 +x 2 −x 2x − 4.2x − 22x + 4 = 0. Bài 1.46 (D-07). Gi i phương trình sau: 1 log2 (4x + 15.2x + 27) + 2 log2 ( ) = 0. 4.2x − 3 Bài 1.47 (D-08). Gi i b t phương trình sau: x2 − 3x + 2 ≥ 0. log 1 x 2 Bài 1.48 (D-10). Gi i phương trình sau: √ √ 3 3 +4x−4 42x+ x+2 + 2x = 42+ x+2 + 2x (x ∈ R) Bài 1.49 (B-02). Gi i b t phương trình sau: logx (log3 (9x − 72)) ≤ 1. Bài 1.50 (B-05). Ch ng minh r ng v i m i x ∈ R, ta có: 12 x 15 x 20 x ) + ( ) + ( ) ≥ 3x + 4x + 5x . ( 5 4 3 Khi nào đ ng th c s y ra? Bài 1.51 (B-06). Gi i b t phương trình sau: log5 (4x + 144) − 4 log2 5 < 1 + log5 (2x−2 + 1).
  10. Chương 1.Phương trình-B t PT-H PT-H BPT 9 Bài 1.52 (B-07). Gi i phương trình sau: √ √ √ ( 2 − 1)x + ( 2 + 1)x − 2 2 = 0. Bài 1.53 (B-08). Gi i b t phương trình sau: x2 + x log0,7 (log6 ( )) < 0. x+4 Bài 1.54 (A-06). Gi i phương trình sau: 3.8x + 4.12x − 18x − 2.27x = 0. Bài 1.55 (A-07). Gi i b t phương trình sau: 2 log3 (4x − 3) + log 1 (2x + 3) ≤ 2. 3 Bài 1.56 (A-08). Gi i phương trình sau: log2x−1 (2x2 + x − 1) + logx+1 (2x − 1)2 = 4. 1.2 H Phương trình Bài 1.57 (D-12). Gi i h phương trình xy + x − 2 = 0 (x; y ∈ R) ; 2x3 − x2 y + x2 + y 2 − 2xy − y = 0 Bài 1.58 (A-12). Gi i h phương trình x3 − 3x2 − 9x + 22 = y 3 + 3y 2 − 9y (x, y ∈ R). 1 x2 + y 2 − x + y = 2 Bài 1.59 (A-11). Gi i h phương trình: 5x2 y − 4xy 2 + 3y 3 − 2(x + y ) = 0 (x, y ∈ R) xy (x2 + y 2 ) + 2 = (x + y )2
  11. Chương 1.Phương trình-B t PT-H PT-H BPT 10 Bài 1.60 (D-02). Gi i h phương trình sau:  23x = 5y 2 − 4y x x+1 4 + 2 = y. 2x + 2 Bài 1.61 (D-08). Gi i h phương trình sau: xy + x + y = x2 − 2y 2 √ √ (x, y ∈ R). x 2y − y x − 1 = 2x − 2y Bài 1.62 (D-09). Gi i h phương trình sau: x(x + y + 1) − 3 = 0 (x, y ∈ R). 5 (x + y )2 − 2 + 1 = 0 x Bài 1.63 (D-10). Gi i h phương trình sau: x2 − 4x + y + 2 = 0 (x, y ∈ R). 2 log2 (x − 2) − log√2 y = 0 Bài 1.64 (B-02). Gi i h phương trình sau: √ √ x−y = x−y 3 √ x + y = x + y + 2. Bài 1.65 (B-03). Gi i h phương trình sau: 2  3y = y + 2   x2   2  3x = x + 2 .    y2 Bài 1.66 (B-05). Gi i h phương trình sau: √ √ x−1+ 2−y =1 3 log9 (9x2 ) − log3 y 3 = 3. Bài 1.67 (B-08). Gi i h phương trình sau: x4 + 2x3 y + x2 y 2 = 2x + 9 (x, y ∈ R). x2 + 2xy = 6x + 6
  12. Chương 1.Phương trình-B t PT-H PT-H BPT 11 Bài 1.68 (B-09). Gi i h phương trình sau: xy + x + 1 = 7y (x, y ∈ R). x2 y 2 + xy + 1 = 13y 2 Bài 1.69 (B-10). Gi i h phương trình sau: log2 (3y − 1) = x 4x + 2x = 3y 2 . Bài 1.70 (A-03). Gi i h phương trình sau:  1 1 x− =y−  x y  2y = x3 + 1. Bài 1.71 (A-04). Gi i h phương trình sau:  1 log 1 (y − x) − log4 = 1  y 4  x2 + y 2 = 25. Bài 1.72 (A-06). Gi i h phương trình sau: √ √+ y − √ = 3 x xy x + 1 + y + 1 = 4. Bài 1.73 (A-08). Gi i h phương trình sau:   x + y + x3 y + xy 2 + xy = − 5 2 4  x4 + y 2 + xy (1 + 2x) = − 5 .  4 Bài 1.74 (A-09). Gi i h phương trình sau: log2 (x2 + y 2 ) = 1 + log2 (xy ) 2 2 3x −xy+y = 81. Bài 1.75 (A-10). Gi i h phương trình sau: √ (4x2 + 1)x +√y − 3) 5 − 2y = 0 ( 4x2 + y 2 + 2 3 − 4x = 7.
  13. Chương 1.Phương trình-B t PT-H PT-H BPT 12 1.3 Phương pháp hàm s , bài toán ch a tham s Bài 1.76 (D-11). Tìm m đ h phương trình sau có nghi m 2x3 − (y + 2)x2 + xy = m (x, y ∈ R) x2 + x − y = 1 − 2m Bài 1.77 (D-04). Tìm m đ h phương trình sau có nghi m: √ √ √+ y =1 x √ x x + y y = 1 − 3m. Bài 1.78 (D-04). Ch ng minh r ng phương trình sau có đúng m t nghi m: x5 − x2 − 2x − 1 = 0. Bài 1.79 (D-06). Ch ng minh r ng v i m i a > 0, h phương trình sau có nghi m duy nh t: ex − ey = ln (1 + x) − ln (1 + y ) y − x = a. Bài 1.80 (D-07). Tìm giá tr c a tham s m đ phương trình sau có nghi m th c:  x+ 1 +y+ 1 =5   x y  x3 + 1 + y 3 + 1 = 15m − 10.  x3 y3 Bài 1.81 (B-04). Xác đ nh m đ phương trình sau có nghi m √ √ √ √ √ 1 + x2 − 1 − x2 = 2 1 − x4 + 1 + x2 − 1 − x2 . m Bài 1.82 (B-06). Tìm m đ phương trình sau có hai nghi m th c phân bi t: √ x2 + mx + 2 = 2x + 1. Bài 1.83 (B-07). Ch ng minh r ng v i m i giá tr dương c a tham s m, phương trình sau có hai nghi m th c phân bi t: x2 + 2 x − 8 = m(x − 2).
  14. Chương 1.Phương trình-B t PT-H PT-H BPT 13 Bài 1.84 (A-02). Cho phương trình: log2 x + log2 x + 1 − 2m − 1 = 0 (m là tham s ). 3 3 1. Gi i phương trình khi m = 2. √ 2. Tìm m đ phương trình có ít nh t m t nghi m thu c đo n [1; 3 3 ]. Bài 1.85 (A-07). Tìm m đ phương trình sau có nghi m th c: √ √ √ 4 3 x − 1 + m x + 1 = 2 x2 − 1. Bài 1.86 (A-08). Tìm các giá tr c a tham s m đ phương trình sau có đúng hai nghi m th c phân bi t: √ √ √ √ 4 2x + 2x + 2 4 6 − x + 2 6 − x = m (m ∈ R). Đáp s 1 0≤x≤ 1.9 x = −2 4 1.1 x≥4 √ 3− 5 1.10 x = 2 6 1.2 x = π 5 x = − 12 + k 2π 1.11 x = 7π + k 2π 12 x ≤ −1  2 1.3  x = 2 x = ± 23 + k 2π π 1.12 x≥3 x = k 2π x = π + kπ  1.4 x = 3 2 1.13  x = k 2π √ x = 23 + k 2π π 1.5 x = 1 ∨ x = 2 − 2 π 1.14 x = + k 2π 3 1.6 x = 5 1 1.15 cos x = −1; cos x = √ 2 1.7 x > 10 − 34 π x= + kπ 2 1.16 π x= + k 2π 1.8 2 ≤ x < 10 4
  15. Chương 1.Phương trình-B t PT-H PT-H BPT 14 π 1.17 x = π ; x = 3π 5π 7π x= + kπ ; x= ; x= (k ∈ Z) 12 1.30 2 2 2 2 5π x= + kπ 12 x = π + k 2π 1.31 x = π + k π π (k ∈ Z) 1.18 x = − + kπ 8 4 x = 18 + k 23 π π 4 x = 5π + k 23π 18 x = ± π + k 2π (k ∈ Z) 3 1.19 x = − π + kπ x = π + kπ 4 (k ∈ Z) 4 2 1.32 x = − π + kπ 3 π (k ∈ Z) 1.20 x = + kπ 4 x = − π + k 2π (k ∈ Z) 6 1.33 x = 42 + k 27 π π x = kπ (k ∈ Z) 2π 1.21 x=± + k 2π π + kπ (k ∈ Z) 1.34 x = 3 4 2 π x = π + k 2π x= 3 1.35 (k ∈ Z) 2 1.22 5π x = − π + k 2π x= 3 6 π (k ∈ Z) 1.36 x = + kπ x = ± 23 + k 2π π 4 (k ∈ Z) 1.23 π x = 4 + kπ 1.37 x = k π (k ∈ Z) 2 x = 18 + k π π (k ∈ Z) 3 1.24 5π (k ∈ Z) 1.38 x = + k 2π x = −π + k π 4 6 2 1.39 x = − π + kπ π x= + k 2π 4 (k ∈ Z) x = π + k 2π 6 1.25 5π x= + k 2π 2 6 x = k 2π kπ x= 1.40 x = − π + kπ (k ∈ Z) 9 1.26 kπ 4 x= x = − π + kπ 2 8 x = 58 + kπ π 1.27 x = ± π + kπ (k ∈ Z) 3 1.41 x = − 18 + k 23 π π (k ∈ Z) π x= + k 2π (k ∈ Z) 6 1.28 5π x= + k 2π x = − π + k 2π 6 (k ∈ Z) 6 1.42 x = 76 + k 2π π − π + kπ x= (k ∈ Z) 4 1.29 ± 23 + k 2π π x= 1.43 x = 0
  16. Chương 1.Phương trình-B t PT-H PT-H BPT 15 x = −1 x=0 x=2 1.44 ∨ 1.60 x=2 y=1 y=4 1.45 x = 0 ∨ x = 1 1.61 (x; y ) = (5; 2) 3 1.46 x = log2 3 1.62 (x; y ) = (1; 1); (2; − ) 2 √ √ 1.47 S = [2 − 2; 1) ∪ (2; 2 + 2] 1.63 (x; y ) = (3; 1) 1.64 (x; y ) = (1; 1); ( 3 ; 1 ) 1.48 x = 1 ∨ x = 2 22 1.65 x = y = 1 1.49 log9 73 < x ≤ 2 1.66 (x; y ) = (1; 1); (2; 2) 1.50 x = 0 1.67 (x; y ) = (−4; 17 ) 4 1.51 2 < x < 4 1 1.68 (x; y ) = (1; 3 ); (3; 1) 1.52 x = 1 ∨ x = −1 1.69 (x; y ) = (−1; 1 ) 2 1.53 S = (−4; −3) ∪ (8; +∞) √ √ 1.70 √x; y ) = (1; 1); ( −1+ 5 −1+ 5 ( ;2) 2 √ −1− 5 −1− 5 (2;2) 1.54 x = 1 1.71 (x; y ) = (3; 4) 3
  17. Chương 1.Phương trình-B t PT-H PT-H BPT 16 1.78 f (x) = vt đb trên[1; +∞) 1.83 √ 7 1.84 1.x = 3± 3 ≤m≤2 1.80 4 2.0 ≤ m ≤ 2 m ≥ 22 √ 1 1.85 −1 < m ≤ 2−1≤m≤1 1.81 3 √ √ √ 9 1.86 2 6 + 2 4 6 ≤ m < 3 2 + 6 1.82 m ≥ 2
  18. Chương 2 B t đ ng th c 2.1 B t đ ng th c . . . . . . ... . . . . . . . . . . . . . . . . 17 2.2 Giá tr nh nh t- Giá tr l n nh t . . . . . . . . . . . . . . . 18 2.3 Nh n d ng tam giác . . . ... . . . . . . . . . . . . . . . . 20 Đáp s . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . 20 2.1 B t đ ng th c Bài 2.1 (A-09). Ch ng minh r ng v i m i s th c dương x, y, z th a mãn x(x + y + z ) = 3yz , ta có: (x + y )3 + (x + z )3 + 3(x + y )(x + z )(y + z ) ≤ 5(y + z )3 . 1 1 1 Bài 2.2 (A-05). Cho x, y, z là các s dương th a mãn + + = 4. Ch ng x y z minh r ng 1 1 1 ≤ 1. + + 2x + y + z x + 2y + z x + y + 2z Bài 2.3 (A-03). Cho x, y, z là ba s dương và x + y + z ≤ 1. Ch ng minh r ng √ 1 1 1 x2 + y2 + z2 + ≥ 82. + + x2 y2 z2
  19. Chương 2.B t đ ng th c 18 b 1 a Bài 2.4 (D-07). Cho a ≥ b > 0. Ch ng minh r ng : ≤ 2+a 2 a 1 b 2+ b . 2 Bài 2.5 (D-05). Cho các s dương x, y , z th a mãn xyz = 1. Ch ng minh r ng √ 1 + z 3 + x3 1 + x3 + y 3 1 + y3 + z3 ≥ 3 3. + + xy yz zx Khi nào đ ng th c x y ra? 2.2 Giá tr nh nh t- Giá tr l n nh t Bài 2.6 (D-12). Cho các s th c x, y th a mãn (x˘4)2 + (y ˘4)2 + 2xy ≤ 32. Tìm giá tr nh nh t c a bi u th c A = x3 + y 3 + 3(xy ˘1)(x + y ˘2). Bài 2.7 (B-12). Cho các s th c x, y, z th a mãn các đi u ki n x + y + z = 0 và x2 + y 2 + z 2 = 1. Tìm giá tr l n nh t c a bi u th c P = x5 + y 5 + z 5 . Bài 2.8 (A-12). Cho các s th c x, y, z th a mãn đi u ki n x + y + z = 0. Tìm giá tr nh nh t c a bi u th c P = 3|x−y| + 3|y−z| + 3|z−x| − 6x2 + 6y 2 + 6z 2 Bài 2.9 (B-11). Cho a và b là các s th c dương th a mãn 2(a2 + b2 ) + ab = (a + b)(ab + 2). Tìm giá tr nh nh t c a bi u th c a3 b 3 a2 b 2 P= 4 3 + 3 − 9 2 + 2 . b a b a Bài 2.10 (A-11). Cho x, y, z là ba s th c thu c đo n [1; 4] và x ≥ y, x ≥ z . Tìm giá tr nh nh t c a bi u th c x y z P= + + 2x + 3y y + z z + x .
  20. Chương 2.B t đ ng th c 19 Bài 2.11 (D-11). Tìm giá tr nh nh t và giá tr l n nh t c a hàm s y = 2x2 + 3x + 3 trên đo n [0; 2]. x+1 Bài 2.12 (A-07). Cho x, y, z là các s th c dương thay đ i và th a mãn đi u ki n xyz = 1. Tìm giá tr nh nh t c a bi u th c: x2 ( y + z ) y 2 (z + x) z 2 (x + y ) √+√ √+√ P= √ √. y y + 2z z z z + 2x x x x + 2y y Bài 2.13 (A-06). Cho hai s th c x = 0, y = 0 thay đ i và th a mãn đi u ki n: (x + y )xy = x2 + y 2 − xy. Tìm giá tr l n nh t c a bi u th c 1 1 A= + 3. 3 x y Bài 2.14 (B-10). Cho các s th c không âm a, b, c th a mãn a + b + c = 1. Tìm giá tr nh nh t c a bi u th c √ M = 3(a2 b2 + b2 c2 + c2 a2 ) + 3(ab + bc + ca) + 2 a2 + b2 + c2 . Bài 2.15 (B-09). Cho các s th c x, y thay đ i và th a mãm (x + y )3 + 4xy ≥ 2. Tìm giá tr nh nh t c a bi u th c A = 3(x4 + y 4 + x2 y 2 ) − 2(x2 + y 2 ) + 1. Bài 2.16 (B-08). Cho hai s th c x, y thay đ i và th a mãn h th c x2 + y 2 = 1. Tìm giá tr l n nh t và giá tr nh nh t c a bi u th c 2(x2 + 6xy ) P= . 1 + 2xy + 2y 2 Bài 2.17 (B-07). Cho x, y, z là ba s th c dương thay đ i. Tìm giá tr nh nh t c a bi u th c: x 1 y 1 z 1 P =x + +y + +z + . 2 yz 2 zx 2 xy

NỘI DUNG TÓM TẮT FILE

Tuyển tập các đề thi đại học 2002 2012 theo các chủ đề

of x

  HƯỚNG DẪN DOWNLOAD TÀI LIỆU


Bước 1:Tại trang tài liệu tailieumienphi.vn bạn muốn tải, click vào nút Download màu xanh lá cây ở phía trên.
Bước 2: Tại liên kết tải về, bạn chọn liên kết để tải File về máy tính. Tại đây sẽ có lựa chọn tải File được lưu trên tailieumienphi.vn
Bước 3: Một thông báo xuất hiện ở phía cuối trình duyệt, hỏi bạn muốn lưu . - Nếu click vào Save, file sẽ được lưu về máy (Quá trình tải file nhanh hay chậm phụ thuộc vào đường truyền internet, dung lượng file bạn muốn tải)
Có nhiều phần mềm hỗ trợ việc download file về máy tính với tốc độ tải file nhanh như: Internet Download Manager (IDM), Free Download Manager, ... Tùy vào sở thích của từng người mà người dùng chọn lựa phần mềm hỗ trợ download cho máy tính của mình


 
Mã tài liệu
3l21tq
Danh mục
Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ
Thể loại
chuyên đề toán, đề thi đại học, tuyển sinh đại học, bài tập toán, ôn thi môn toán
Loại file
PDF
Số trang
62
Dung lượng
0.34 M
Lần xem
31
Lần tải
2
 
LINK DOWNLOAD

Tuyen-tap-cac-de-thi-dai-hoc-2002-2012-theo-cac-chu-de.PDF[0.34 M]

File đã kiểm duyệt
     Báo vi phạm bản quyền Phần mềm chuyển PDF thành .Doc
Pass giải nén (Nếu có):
tailieumienphi.vn
DOWNLOAD
(Miễn phí)

Bạn phải gởi bình luận/ đánh giá để thấy được link tải

Nếu bạn chưa đăng nhập xin hãy chọn ĐĂNG KÝ hoặc ĐĂNG NHẬP

BÌNH LUẬN


Nội dung bậy bạ, spam tài khoản sẽ bị khóa vĩnh viễn, IP sẽ bị khóa.
Đánh giá(nếu muốn)
 BÌNH LUẬN

ĐÁNH GIÁ


ĐIỂM TRUNG BÌNH

0
0 Đánh giá
Tài liệu rất tốt (0)
Tài liệu tốt (0)
Tài liệu rất hay (0)
Tài liệu hay (0)
Bình thường (0)

Tài liệu tương tự

TÀI LIỆU NỔI BẬT