Xem mẫu
- CHÖÔNG VIII
PHÖÔNG TRÌNH LÖÔÏ N G GIAÙC KHOÂNG MAÃU MÖÏC
Tröôø n g hôï p 1: TOÅ N G HAI SOÁ KHOÂ N G AÂ M
⎧A ≥ 0 ∧ B ≥ 0
AÙ p duïn g Neá u ⎨ thì A = B = 0
⎩A + B = 0
Baø i 156 Giaû i phöông trình:
4 cos2 x + 3tg 2 x − 4 3 cos x + 2 3tgx + 4 = 0 (*)
Ta coù :
( ) +( )
2 2
(*) ⇔ 2 cos x − 3 3tgx + 1 =0
⎧ 3
⎪cos x =
⎪
⇔⎨ 2
⎪tgx = − 1
⎪
⎩ 3
⎧ π
⎪ x = ± + k2π, k ∈
⎪ 6
⇔⎨
⎪tgx = − 1
⎪
⎩ 3
π
⇔x=− + k2π, k ∈
6
Baø i 157 Giaû i phöông trình:
8 cos 4x.cos2 2x + 1 − cos 3x + 1 = 0 ( *)
Ta coù : ( *) ⇔ 4 cos 4x (1 + cos 4x ) + 1 + 1 − cos 3x = 0
⇔ ( 4 cos2 4x + 4 cos 4x + 1) + 1 − cos 3x = 0
2
⇔ ( 2 cos 4x + 1) + 1 − cos 3x = 0
⎧ 1 ⎧ 1
⎪cos 4x = − ⎪cos 4x = −
⇔⎨ 2⇔ ⎨ 2
⎪cos 3x = 1
⎩ ⎪3x = k2π, k ∈
⎩
⎧ 1
⎪cos 4x = − 2
⎪
⇔⎨
⎪ x = k2π , k ∈ (coù 3 ñaàu ngoïn cung)
⎪
⎩ 3
- ⎧ 1
⎪ cos 4x = −
⎪ 2
⇔⎨
⎪x = − 2π 2π
+m2π hay x = m2π hay x = + m2π , m ∈
⎪
⎩ 3 3
2π
⇔x=± + m2π, m ∈
3
(ta nhaä n k = ±1 vaø loaï i k = 0 )
Baø i 158 Giaû i phöông trình:
sin 2 3x
sin2 x +
3sin 4x
( cos 3x sin3 x + sin 3x cos3 x ) = sin x sin2 3x ( *)
Ta coù : cos 3x.sin 3 3x + sin 3x.cos3 x
= ( 4 cos3 x − 3 cos x ) sin 3 x + ( 3 sin x − 4 sin3 x ) cos3 x
= −3 cos x sin 3 x + 3 sin x cos3 x = 3 sin x cos x ( cos2 x − sin 2 x )
3 3
= sin 2x. cos 2x = sin 4x
2 4
1
Vaäy: ( *) ⇔ sin 2 x + sin2 3x = sin x sin2 3x vaø sin 4x ≠ 0
4
2
⎛1 ⎞ 1 1
⇔ ⎜ sin 2 3x − sin x ⎟ − sin4 3x + sin2 3x = 0 vaø sin 4x ≠ 0
⎝2 ⎠ 4 4
2
⎛1 ⎞ 1
⇔ ⎜ sin 2 3x − sin x ⎟ + sin 2 3x (1 − sin2 3x ) = 0 vaø sin 4x ≠ 0
⎝2 ⎠ 4
2
⎛1 ⎞ 1
⇔ ⎜ sin2 3x − sin x ⎟ + sin2 6x = 0 vaø sin 4x ≠ 0
⎝2 ⎠ 16
⎧sin 4x ≠ 0
⎪1
⎪
⇔ ⎨ sin 2 3x = sin x
⎪2
⎪sin 3x = 0 ∨ cos 3x = 0
⎩
⎧sin 4x ≠ 0
⎧sin 4x ≠ 0 ⎪
⎪ ⎪1
⇔ ⎨sin 3x = 0 ∨ ⎨ = sin x
⎪sin x = 0 (VN) ⎪ 2
⎩ ⎪sin 3x = ±1
⎩
⎧sin 4x ≠ 0
⎪ 1
⎪
⇔ ⎨sin x =
⎪ 2
⎪3 sin x − 4 sin 3 x = ±1
⎩
- ⎧sin 4x ≠ 0
⎪
⇔⎨ 1
⎪sin x = 2
⎩
⎧sin 4x ≠ 0
⎪
⇔⎨ π 5π
⎪ x = 6 + k2π ∨ 6 + k2π, k ∈
⎩
π 5π
⇔ x = + k2π ∨ x = + k2π, k ∈
6 6
Tröôøng hôïp 2 Phöông phaùp ñoái laäp
⎧A ≤ M ≤ B
Neáu ⎨ thì A = B = M
⎩A = B
Baø i 159 Giaû i phöông trình: sin4 x − cos4 x = sin x + cos x (*)
Ta coù : (*) ⇔ sin2 x − cos2 x = sin x + cos x
⇔ − cos 2x = sin x + cos x
⎧cos 2x ≤ 0
⎪
⇔⎨ 2
⎪cos 2x = 1 + 2 sin x cos x
⎩
⎧cos 2x ≤ 0
⎪ ⎧cos 2x ≤ 0
⇔⎨ ⇔⎨
⎪− sin 2x = 2 sin 2x ⎩sin 2x = 0 (cos 2x = ± 1 )
2
⎩
⇔ cos 2x = −1
π
⇔x= + kπ, k ∈
2
Caù c h khaù c
Ta coù sin 4 x − cos4 x ≤ sin4 x ≤ sin x ≤ sin x + cos x
⎧cos x = 0
⎪ π
Do ñoù (*) ⇔ ⎨ 4 ⇔ cos x = 0 ⇔ x = + kπ, k ∈
⎪sin x = sin x
⎩ 2
2
Baø i 160: Giaû i phöông trình: ( cos 2x − cos 4x ) = 6 + 2 sin 3x (*)
Ta coù : (*) ⇔ 4 sin 2 3x.sin 2 x = 6 + 2 sin 3x
• Do: sin 2 3x ≤ 1 vaø sin 2 x ≤ 1
neâ n 4 sin 2 3x sin 2 x ≤ 4
• Do sin 3x ≥ −1 neâ n 6 + 2 sin 3x ≥ 4
Vaä y 4 sin 2 3x sin 2 x ≤ 4 ≤ 6 + 2 sin 3x
Daá u = cuû a phöông trình (*) ñuù n g khi vaø chæ khi
- ⎧sin2 3x = 1
⎪ 2 ⎧sin2 x = 1
⎨sin x = 1 ⇔ ⎨
⎪sin 3x = −1 ⎩sin 3x = −1
⎩
⎧ π
⎪ x = ± + k2π, k ∈ π
⇔⎨ 2 ⇔ x = + k2π, k ∈
⎪sin 3x = −1 2
⎩
cos3 x − sin 3 x
Baø i 161 Giaû i phöông trình: = 2 cos 2x (*)
sin x + cos x
Ñieà u kieä n : sin x ≥ 0 ∧ cos x ≥ 0
Ta coù : (*)
(
⇔ ( cos x − sin x )(1 + sin x cos x ) = 2 ( cos2 x − sin 2 x ) sin x + cos x )
⎡cos x − sin x = 0 (1)
⇔⎢
(
⎢1 + sin x cos x = 2 ( cos x + sin x ) sin x + cos x
⎣ ) (2)
π
Ta coù : (1) ⇔ tgx = 1 ⇔ x = + kπ, k ∈
4
Xeùt (2)
Ta coù : khi sin x ≥ 0 thì sin x ≥ sin x ≥ sin 2 x
Töông töï cos x ≥ cos x ≥ cos2 x
Vaä y sin x + cos x ≥ 1 vaø sin x + cos x ≥ 1
Suy ra veá phaûi cuû a (2) thì ≥ 2
1 3
Maø veá traù i cuû a (2): 1 + sin 2x ≤
2 2
Do ñoù (2) voâ nghieä m
π
Vaä y : (*) ⇔ x = + kπ, k ∈
4
Baø i 162: Giaû i phöông trình: 3 − cos x − cos x + 1 = 2 (*)
Ta coù : (*) ⇔ 3 − cos x = 2 + cos x + 1
⇔ 3 − cos x = 5 + cos x + 4 cos x + 1
⇔ −2 ( cos x + 1) = 4 cos x + 1
Ta coù : −2 ( cos x + 1) ≤ 0 ∀x
maø 4 cos x + 1 ≥ 0 ∀x
Do ñoù daá u = cuû a (*) xaû y ra ⇔ cos x = −1
⇔ x = π + k2π , k ∈
- Baø i 163: Giaû i phöông trình:
cos 3x + 2 − cos2 3x = 2 (1 + sin2 2x ) (*)
Do baá t ñaú n g thöù c Bunhiacoá p ski:
AX + BY ≤ A 2 + B2 . X 2 + Y 2
neâ n : 1 cos 3x + 1 2 − cos2 3x ≤ 2. cos2 3x + ( 2 − cos2 3x ) = 2
Daá u = xaû y ra ⇔ cos 3x = 2 − cos2 3x
⎧cos 3x ≥ 0
⇔⎨ 2
⎩cos 3x = 2 − cos 3x
2
⎧cos 3x ≥ 0
⇔⎨ ⇔ cos 3x = 1
⎩cos 3x = ±1
Maë t khaù c : 2 (1 + sin 2 2x ) ≥ 2
daá u = xaû y ra ⇔ sin 2x = 0
Vaä y : cos 3x + 2 − cos2 3x ≤ 2 ≤ 2 (1 + sin2 2x )
daá u = cuû a (*) chæ xaû y ra khi:
cos 3x = 1 ∧ sin 2x = 0
⎧cos 3x = 1
⎪
⇔⎨ kπ
⎪ x = 2 , k ∈ ( coù 4 ñaàu ngoïn cung )
⎩
⇔ x = 2mπ , m ∈
⎛ π⎞
Baø i 164: Giaû i phöông trình: tg 2 x + cotg 2 x = 2 sin 5 ⎜ x + ⎟ (*)
⎝ 4⎠
Ñieà u kieä n : sin 2x ≠ 0
• Do baá t ñaú n g thöù c Cauchy: tg 2 x + cotg 2 x ≥ 2
daá u = xaû y ra khi tgx = cotgx
⎛ π⎞
• Maë t khaù c : sin ⎜ x + ⎟ ≤ 1
⎝ 4⎠
⎛ π⎞
neâ n 2 sin5 ⎜ x + ⎟ ≤ 2
⎝ 4⎠
⎛ π⎞
daá u = xaû y ra khi sin ⎜ x + ⎟ = 1
⎝ 4⎠
⎛ π⎞
Do ñoù : tg 2 x + cotg 2 x ≥ 2 ≥ 2 sin5 ⎜ x + ⎟
⎝ 4⎠
⎧tgx = cotgx
⎪
Daá u = cuû a (*) xaû y ra ⇔ ⎨ ⎛ π⎞
⎪sin ⎜ x + 4 ⎟ = 1
⎩ ⎝ ⎠
- ⎧tg 2 x = 1
⎪
⇔⎨ π
⎪ x = + k2π , k ∈
⎩ 4
π
⇔ x = + k2π, k ∈
4
Tröôøng hôïp 3:
⎧ A ≤ M vaø B ≤ M ⎧A = M
AÙp duïn g: Neáu ⎨ thì ⎨
⎩A + B = M + N ⎩B = N
⎧sin u = 1
sin u + sin v = 2 ⇔ ⎨
⎩sin v = 1
⎧sin u = 1
sin u − sin v = 2 ⇔ ⎨
⎩sin v = − 1
⎧sin u = − 1
sin u + sin v = − 2 ⇔ ⎨
⎩sin v = − 1
Töông töï cho caù c tröôø n g hôïp sau
sin u ± cos v = ± 2 ; cos u ± cos v = ± 2
3x
Baø i 165: Giaû i phöông trình: cos 2x + cos − 2 = 0 ( *)
4
3x
Ta coù : ( *) ⇔ cos 2x + cos =2
4
3x
Do cos 2x ≤ 1 vaø cos ≤1
4
neâ n daá u = cuû a (*) chæ xaû y ra
⎧cos 2x = 1 ⎧ x = kπ , k ∈
⎪ ⎪
⇔⎨ 3x ⇔⎨ 8hπ ⇔ x = 8mπ, m ∈
⎪cos 4 = 1
⎩ ⎪x = 3 , h ∈
⎩
8hπ 8h
Do : kπ = ⇔k=
3 3
ñeå k nguyeân ta choïn h = 3m ( m ∈ Ζ ) ( thì k = 8m )
Caù c h khaù c
⎧cos 2x = 1 ⎧ x = kπ , k ∈
⎪ ⎪
⎨ 3x ⇔ ⎨ 3kπ ⇔ x = 8mπ, m ∈
⎪cos 4 = 1
⎩ ⎪cos 4 = 1
⎩
Baø i 166: Giaû i phöông trình:
cos 2x + cos 4x + cos 6x = cos x.cos 2x.cos 3x + 2 ( *)
- cos 2x + cos 4x + cos 6x = 2 cos 3x cos x + 2 cos2 3x − 1
= 2 cos 3x ( cos x + cos 3x ) − 1
= 4 cos 3x.cos 2x.cos x − 1
1
Vaä y : cos 3x.cos 2x.cos x = ( cos 2x + 6 cos 4x + cos 6x + 1)
4
Do ñoù :
1 9
( *) ⇔ cos 2x + cos 4x + cos 6x = ( cos2x + cos 4x + cos6x ) +
4 4
3 9
⇔ ( cos 2x + cos 4x + cos 6x ) =
4 4
⇔ cos 2x + cos 4x + cos 6x = 3
⎧cos 2x = 1 ⎧2x = k2π, k ∈ (1)
⎪ ⎪
⇔ ⎨cos 4x = 1 ⇔ ⎨cos 4x = 1 (2)
⎪cos 6x = 1 ⎪cos 6x = 1 (3)
⎩ ⎩
⇔ 2x = k2π, k ∈ ⇔ x = kπ, k ∈
( Theá (1) vaø o (2) vaø (3) ta thaá y hieå n nhieâ n thoû a )
Baø i 167: Giaû i phöông trình:
cos 2x − 3 sin 2x − 3 sin x − cos x + 4 = 0 ( *)
Ta coù :
⎛ 1 3 ⎞ ⎛ 3 1 ⎞
( *) ⇔ 2 = ⎜ −
⎜ cos 2x + sin 2x ⎟ + ⎜
⎟ ⎜ 2 sin x + cos x ⎟
⎟
⎝ 2 2 ⎠ ⎝ 2 ⎠
⎛ π⎞ ⎛ π⎞
⇔ 2 = sin ⎜ 2x − ⎟ + sin ⎜ x + ⎟
⎝ 6⎠ ⎝ 6⎠
⎧ ⎛ π⎞ ⎧ π π
⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪2x − 6 = 2 + k2π, k ∈
⎪ ⎝ ⎠ ⎪
⇔⎨ ⇔⎨
⎪sin ⎛ x + π ⎞ = 1 ⎪ x + π = π + h2π, h ∈
⎪ ⎜ ⎟ ⎪ 6 2
⎩ ⎝ 6⎠ ⎩
⎧ π
⎪ x = 3 + kπ, k ∈
⎪ π
⇔⎨ ⇔ x = + hπ, h ∈
⎪ x = π + h2π, h ∈ 3
⎪
⎩ 3
Caù c h khaù c
⎧ ⎛ π⎞ ⎧ ⎛ π⎞
⎪sin ⎜ 2x − 6 ⎟ = 1 ⎪sin ⎜ 2x − 6 ⎟ = 1
⎪ ⎝ ⎠ ⎪ ⎝ ⎠
( *) ⇔ ⎨ ⇔⎨
⎪sin ⎛ x + π ⎞ = 1 ⎪ x + π = π + h2π, h ∈
⎪ ⎜ ⎟ ⎪
⎩ ⎝ 6⎠ ⎩ 6 2
- ⎧ ⎛ π⎞
⎪sin ⎜ 2x − 6 ⎟ = 1
⎪ π
⇔⎨ ⎝ ⎠ ⇔x= + hπ, h ∈
⎪ x = π + h2π, h ∈ 3
⎪
⎩ 3
Baø i 168: Giaû i phöông trình: 4 cos x − 2 cos 2x − cos 4x = 1 ( *)
Ta coù : ( * ) ⇔ 4 cos x − 2 ( 2 cos2 x − 1 ) − (1 − 2 sin 2 2x ) = 1
⇔ 4cosx − 4 cos2 x + 8 sin2 x cos2 x = 0
⇔ cos x = 0 hay 1 − cos x + 2 sin 2 x cos x = 0
⇔ cos x = 0 hay 1 + cos x ( 2 sin 2 x − 1) = 0
⇔ cos x = 0 hay 1 − cos x cos 2x = 0 ( * *)
1
⇔ cos x = 0 hay 1 − ( cos 3x + cos x ) = 0
2
⇔ cos x = 0 ∨ cos 3x + cos x = 2
⎧cos 3x = 1
⇔ cos x = 0 ∨ ⎨
⎩cos x = 1
⎧cos x = 1
⇔ cos x = 0 ⇔ ⎨
⎩4 cos x − 3 cos x = 1
3
⇔ cos x = 0 ∨ cos x = 1
π
⇔x= + kπ ∨ x = k2π, k ∈
2
Caù c h khaù c
( * *) ⇔ cos x = 0 hay cos x cos 2x = 1
⎧cos x = 1 ⎧cos x = − 1
⇔ cos x = 0 ∨ ⎨ ∨⎨
⎩cos 2x = 1 ⎩cos 2x = − 1
π ⎧ x = k2π, k ∈ ⎧ x = π + k2π, k ∈ ( loaïi )
⇔ x = + kπ, k ∈ ∨ ⎨ ∨⎨
2 ⎩cos 2x = 1 ⎩cos 2x = − 1
π
⇔ x = + kπ ∨ x = k2π, k ∈
2
Baø i 169: Giaû i phöông trình:
1
tg2x + tg3x + = 0 ( *)
sin x cos 2x cos 3x
Ñieà u kieä n : sin 2x cos 2x cos 3x ≠ 0
Luù c ñoù :
sin 2x sin 3x 1
( *) ⇔ + + =0
cos 2x cos 3x sin x.cos 2x.cos 3x
⇔ sin 2x sin x cos 3x + sin 3x sin x.cos 2x + 1 = 0
⇔ sin x ( sin 2x cos 3x + sin 3x cos 2x ) + 1 = 0
- ⇔ sin x.sin 5x = −1
1
⇔ − ( cos 6x − cos 4x ) = −1
2
⇔ cos 6x − cos 4x = 2
⎧t = cos 2x ⎧t = cos 2x
⎧cos 6x = 1 ⎪ 3 ⎪ 3
⇔⎨ ⇔ ⎨4t − 3t = 1 ⇔ ⎨4t − 3t = 1
⎩cos 4x = −1 ⎪ 2 ⎪
⎩2t − 1 = −1 ⎩t = 0
Do ñoù : (*) voâ nghieä m .
Caù c h khaù c
⎧sin x = 1 ⎧sin x = − 1
⇔ sin x. sin 5x = −1 ⇔ ⎨ hay ⎨
⎩sin 5x = − 1 ⎩sin 5x = 1
⎧ π ⎧ π
⎪ x = + k2π, k ∈ ⎪ x = − + k2π, k ∈
⇔⎨ 2 hay ⎨ 2
⎪sin 5x = − 1
⎩ ⎪sin 5x = 1
⎩
⇔ x ∈∅
Baø i 170: Giaû i phöông trình: cos2 3x.cos 2x − cos2 x = 0 ( *)
1 1
Ta coù : ( * ) ⇔ (1 + cos 6x ) cos 2x − (1 + cos 2x ) = 0
2 2
⇔ cos 6x cos 2x = 1
1
⇔ ( cos 8x + cos 4x ) = 1
2
⇔ cos 8x + cos 4x = 2
⎧cos 8x = 1
⇔⎨
⎩cos 4x = 1
⎧2 cos2 4x − 1 = 1
⇔⎨
⎩cos 4x = 1
⎧cos2 4x = 1
⇔⎨
⎩cos 4x = 1
⇔ cos 4x = 1
⇔ 4x = k2π, k ∈
kπ
⇔x= ,k ∈
2
Caù c h khaù c
⇔ cos 6x cos 2x = 1
⎧cos 2x = 1 ⎧cos 2x = −1
⇔⎨ hay ⎨
⎩cos 6x = 1 ⎩cos 6x = −1
- ⎧2x = k2π, k ∈ ⎧2x = π + k2π, k ∈
⇔⎨ hay ⎨
⎩cos 6x = 1 ⎩cos 6x = −1
kπ
x= ,k ∈
2
Caù c h khaù c
⎧cos 8x = 1 ⎧cos 8x = 1
⎨ ⇔⎨
⎩cos 4x = 1 ⎩4x = k2π, k ∈
kπ
⇔x= ,k ∈
2
Tröôøng hôïp 4: DUØNG KHAÛO SAÙT HAØM SOÁ
x
y = a laø haøm giaûm khi 0< a m, ∀x ≠ + kπ , k ∈
2
π
cos x m
< co s x n
⇔ n > m, ∀x ≠ + kπ , k ∈
2
sin x m
≤ sin x n
⇔ n ≥ m, ∀x
cos x m
≤ co s x n
⇔ n ≥ m, ∀x
x2
Baø i 171: Giaû i phöông trình: 1 − = cos x ( *)
2
x2
Ta coù : ( *) ⇔ 1 = + cos x
2
x2
Xeù t y= + cos x treân R
2
Ta coù : y ' = x − sin x
vaø y '' = 1 − cos x ≥ 0 ∀x ∈ R
Do ñoù y’(x) laø haø m ñoà n g bieá n treâ n R
Vaä y ∀x ∈ ( 0, ∞ ) : x > 0 neân y ' ( x ) > y ' ( 0) = 0
∀x ∈ ( −∞, 0) : x < 0 neân y ' ( x ) < y ' ( 0) = 0
Do ñoù :
x2
Vaä y : y = + cos x ≥ 1 ∀x ∈ R
2
Daá u = cuû a (*) chæ xaû y ra taï i x = 0
Do ñoù ( *) ⇔ x = 0 •
- Baø i 172: Giaû i phöông trình
sin 4 x + sin 6 x = sin 8 x + sin10 x (*)
Ta coù
⎧sin 4 x ≥ sin 8 x vaø daáu =xaûy ra khi vaø chæ khi sin 2 x = 1hay sinx = 0
⎪
⎨ 6
⎪ sin x ≥ sin x vaø daáu =xaûy ra khi vaø chæ khi sin x = 1 hay sinx = 0
10 2
⎩
⇔ sin 2 x = 1 ∨ sinx = 0
π
⇔ x = ± + k 2π ∨ x = k 2π , k ∈
2
Caù c h khaù c
(*) ⇔ sin 4 x = 0 hay 1+ sin 2 x = sin 4 x + sin 6 x
⇔ sin x = 0 hay sin 2 x =1
BAØI TAÄP
Giaû i caù c phöông trình sau
1. lg ( sin2 x ) − 1 + sin 3 x = 0
⎛ π⎞
2. sin 4x − cos 4x = 1 + 4 2 sin ⎜ x − ⎟
⎝ 4⎠
1
3. sin 2 x + sin 2 3x = sin x. sin 2 3x
4
4. πsin x
= cos x
5. 2 cos x + 2 sin 10x = 3 2 + 2 cos 28x. sin x
2
6. ( cos 4x − cos 2x ) = 5 + sin 3x
7. sin x + cos x = 2 ( 2 − sin 3x )
8. sin 3x ( cos 2x − 2 sin 3x ) + cos 3x (1 + sin 2x − 2 cos 3x ) = 0
9. tgx + tg2x = − sin 3x cos 2x
10. 2 log a ( cot gx ) = log 2 ( cos x )
⎡ π⎤
11. 2sin x = cos x vôùi x ∈ ⎢0, ⎥
⎣ 2⎦
12. cos x + sin x = 1
13 14
13. cos 2x − cos 6x + 4 ( sin 2x + 1) = 0
14. sin x + cos x = 2 ( 2 − cos 3x )
15. sin3 x + cos3 x = 2 − sin4 x
16. cos2 x − 4 cos x − 2x sin x + x 2 + 3 = 0
sin x
17. 2 + sin x = sin 2 x + cos x
18. 3 cot g 2 x + 4 cos2 x − 2 3 cot gx − 4 cos x + 2 = 0
Th.S Phạm Hồng Danh (TT luyện thi Vĩnh Viễn)
nguon tai.lieu . vn