Xem mẫu

  1. ỦY BAN NHÂN DÂN THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG CAO ĐẲNG KINH TẾ KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH  GIÁO TRÌNH MÔN HỌC: LÝ THUYẾT ĐIỀU KHIỂN TỰ ĐỘNG NGÀNH: CNKT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA TRÌNH ĐỘ: CAO ĐẲNG THÔNG TIN CHỦ NHIỆM ĐỀ TÀI Họ tên: ĐỖ HỮU NHÂN Học vị: Thạc sĩ Đơn vị: Khoa Điện – Tự động hóa Email: dohuunhan@hotec.edu.vn TRƯỞNG KHOA TỔ TRƯỞNG CHỦ NHIỆM BỘ MÔN ĐỀ TÀI Đỗ Hữu Nhân HIỆU TRƯỞNG DUYỆT Thành phố Hồ Chí Minh, năm 2020
  2. TUYÊN BỐ BẢN QUYỀN Tài liệu này thuộc loại sách giáo trình nên các nguồn thông tin có thể được phép dùng nguyên bản hoặc trích dùng cho các mục đích về đào tạo và tham khảo. Mọi mục đích khác mang tính lệch lạc hoặc sử dụng với mục đích kinh doanh thiếu lành mạnh sẽ bị nghiêm cấm.
  3. LỜI GIỚI THIỆU Giới thiệu xuất xứ của giáo trình, quá trình biên soạn, mối quan hệ của giáo trình với chương trình đào tạo và cấu trúc chung của giáo trình. Lời cảm ơn của các cơ quan liên quan, các đơn vị và cá nhân đã tham gia. Thành phố Hồ Chí Minh, ngày 28 tháng 05 năm 2020 Chủ biên Đỗ Hữu Nhân
  4. DANH MỤC TỪ VIẾT TẮT CHỮ CÁI VIẾT TẮT CỤM TỪ ĐẦY ĐỦ LT Lý thuyết HT Hệ thống ĐK Điều khiển ĐKTĐ Điều khiển tự động pt Phương trình vp Vi phân ĐL Định luật TT Trạng thái QĐNS Quỹ đạo nghiệm số
  5. MỤC LỤC TRANG LỜI GIỚI THIỆU CHƯƠNG 1: TỔNG QUAN HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG .............................. 1 1.1. Giới thiệu chung về điều khiển ..................................................................................... 1 1.2. Nhiệm vụ cơ bản của lý thuyết điều khiển .................................................................. 2 1.3. Lịch sử phát triển của lý thuyết điền khiển tự động .................................................... 2 1.4. Cơ sở hệ thống tự động................................................................................................. 3 1.5. Ví dụ một số hệ thống điều khiển tự động trong thực tế .............................................. 5 CHƯƠNG 2: KHÁI NIỆM CƠ BẢN VÀ CƠ SỞ TOÁN HỌC TRONG LT ĐKTĐ ...... 10 2.1. Khái niệm về tín hiệu ................................................................................................. 10 2.2. Phép biến đổi Laplace................................................................................................. 11 2.3. Các phép toán ma trận ................................................................................................ 16 CHƯƠNG 3: MÔ TẢ TOÁN HỌC HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG .................. 18 3.1. Phương trình vi phân mô tả hệ thống ......................................................................... 18 3.2. Mô tả hệ thống dưới dạng hàm truyền đạt .................................................................. 19 3.3. Đại số sơ đồ khối ........................................................................................................ 21 3.4. Mô hình trạng thái ...................................................................................................... 24 CHƯƠNG 4: KHẢO SÁT ĐỘNG HỌC HỆ TUYẾN TÍNH LIÊN TỤC ........................ 35 4.1. Các đặc tính thời gian ................................................................................................. 35 4.2. Đặc tính tần số ............................................................................................................ 36 4.3. Khảo sát động học của một số khâu động học cơ bản ................................................ 37 4.4. Khảo sát động học của hệ thống điều khiển tự động .................................................. 41 CHƯƠNG 5: KHẢO SÁT TÍNH ỔN ĐỊNH CỦA HỆ THỐNG ĐKTĐ ......................... 45 5.1. Khái niệm về ổn định hệ thống................................................................................... 45 5.2. Các tiêu chuẩn ổn định đại số ..................................................................................... 47 5.3. Các tiêu chuẩn ổn định tần số ..................................................................................... 51 5.4. Phương pháp quỹ đạo nghiệm số................................................................................ 53 CHƯƠNG 6: KHẢO SÁT CHẤT LƯỢNG CỦA HỆ THỐNG ĐKTĐ ........................... 59 6.1. Khái niệm về chất lượng của hệ thống ....................................................................... 59 6.2. Các chỉ tiêu về chất lượng động ................................................................................. 59 6.3. Các chỉ tiêu chất lượng tĩnh ........................................................................................ 61 CHƯƠNG 7: TỔNG HỢP HỆ THỐNG ........................................................................... 66 7.1. Bài toán tổng hợp hệ thống......................................................................................... 66 7.2. Bộ điều khiển PID ...................................................................................................... 67 7.3. Các phương pháp tổng hợp bộ điều khiển PID .......................................................... 69 7.4. Tổng hợp hệ thống trong không gian trạng thái ......................................................... 71
  6. GIÁO TRÌNH MÔN HỌC Tên môn học: LÝ THUYẾT ĐIỀU KHIỂN TỰ ĐỘNG Mã môn học: MH3103308 Vị trí, tính chất, ý nghĩa và vai trò của môn học: - Vị trí: là môn học chuyên ngành, bố trí học ở học kì 2. - Tính chất: Là môn học bắt buộc chuyên ngành công nghệ kỹ thuật điều khiển và tự động hóa. - Ý nghĩa và vai trò của môn học: Môn học này trang bị cho người học các nội dung về các thành phần của một hệ thống điều khiển tự động tuyến tính liên tục, các phương pháp xây dựng mô hình toán học của hệ thống điều khiển tự động bao gồm: hàm truyền đạt, grapth tín hiệu và phương trình trạng thái, vấn đề điều khiển được và quan sát được, các phương pháp khảo sát ổn định của hệ thống điều khiển tự động, các phương pháp khảo sát chất lượng của hệ thống điều khiển: độ chính xác, miền thời gian, miền tần số và các phương pháp thiết kế hệ thống điều khiển tự động sao cho hệ ổn định và đạt được các chỉ tiêu chất lượng đề ra. Mục tiêu của môn học/mô đun: - Về kiến thức: + Có kiến thức về các phương pháp điều khiển. + Có kỹ năng phân tić h, thiế t kế và kiể m chứng các giải thuâ ̣t điề u khiể n. - Về kỹ năng: + Thiế t kế và kiể m chứng các hệ thống điề u khiể n cơ bản. + Sử dụng phần mềm Matlab dùng để mô phỏng và tổng hợp hệ thống điều khiển. - Về năng lực tự chủ và trách nhiệm: + Có phương pháp làm việc khoa học, biết phân tích và giải quyết các vấn đề mới về lĩnh vực điều khiển, có năng lực thực hiện công việc được giao. + Có ý thức kỷ luật trong quá trình học lý thuyết cũng như thực hành. + Năng động, tự tin, cầu tiến trong công việc. + Hợp tác, thân thiện, khiêm tốn trong các quan hệ + Tự chịu trách nhiệm về chất lượng đối với kết quả công việc do mình đảm nhiệm.
  7. Chương 1: Tổng quan hệ thống điều khiển tự động CHƯƠNG 1: TỔNG QUAN HỆ THỐNG ĐIỀU KHIỂN TỰ ĐỘNG Giới thiệu: Chương 1 của giáo trình tập trung giới thiệu về lịch sử và các khái niệm cơ bản về lý thuyết điều khiển tự động. Trình bày các thành phần trong hệ thống điều khiển tự động và nguyên lý hooạt động trong thực tế thông qua các ví dụ minh họa. Mục tiêu: - Mô tả được khái niệm cơ bản về lý thuyết điều khiển. - Trình bày được nguyên lý cơ bản trong điền khiển tự động. - Giải thích được nguyên lý hoạt động của các thành phần trong hệ thống điều khiển tự động trong thực tế. - Có ý thức tự giác, tính kỷ luật cao, tinh thần trách nhiệm trong công việc, có tinh thần hợp tác, giúp đỡ lẫn nhau. Nội dung chính: 1.1. Giới thiệu chung về điều khiển 1.1.1. Khái niệm về điều khiển Trước tiên để hiểu điều khiển là gì chúng ta đi xét ví dụ: Lái xe, mục tiêu giữ tốc độ xe ổn định với vận tốc là v = 40km/h. + Mắt quan sát đồng hồ đo tốc độ ⇒ Thu thập thông tin. + Não bộ điều khiển tăng tốc độ nếu v < 40km/h và giảm tốc độ nếu v > 40km/h ⇒ xử lý thông tin. + Tay giảm ga hoặc tăng ga ⇒ Tác động lên hệ thống. Kết quả là quá trình điều khiển trên: xe chạy với tốc độ “gần” bằng 40km/h. Khái niệm về điều khiển: Điều khiển là quá trình thu thập thông tin, xử lý thông tin và tác động lên hệ thống để đáp ứng của hệ thống “gần” với mục đích định trước. đều khiển tự động là quá trình điều khiển không có sự tác động của con người. 1.1.2. Tại sao cần phải điều khiển tự động? Chúng ta cần phải điều khiển tự động cho hệ thống khi: + Đáp ứng của hệ thống không thõa mãn yêu cầu. + Cần tăng độ chính xác, tăng năng suất, tăng hiệu quả kinh tế cho hệ thống. 1.1.3. Phân loại hệ thống điều khiển Phân loại dựa trên mô tả toán học của hệ thống: + Hệ thống liên tục: Hệ thống liên tục được mô tả bằng phương trình vi phân. KHOA ĐIỆN – TỰ ĐỘNG HÓA 1
  8. Chương 1: Tổng quan hệ thống điều khiển tự động + Hệ thống rời rạc: Hệ thống rời rạc được mô tả bằng phương trình sai phân. + Hệ thống tuyến tính: hệ thống được mô tả bằng hệ pt vi phân/sai phân tuyến tính. + Hệ thống phi tuyến: hệ thống được mô tả bằng hệ pt vi phân/sai phân phi tuyến. + Hệ thống bất biến theo thời gian: hệ số của pt vi phân/sai phân mô tả HT không đổi. + Hệ thống biến đổi theo thời gian: hệ số của pt vi phân/ sai phân mô tả hệ thống thay đổi theo thời gian. Phân loại dựa vào số ngõ vào – ra của hệ thống: + Hệ thống một ngõ vào – một ngõ ra (hệ SISO): (Single Input – Single Output) + Hệ thống nhiều ngõ vào – nhiều ngõ ra (hệ MIMO): (Multi Input – Multi Output) + Đa số các hệ thống trong thực tế đề là hệ phi tuyến biến đổi theo thới gian, nhiều ngõ vào, nhiều ngõ ra. 1.2. Nhiệm vụ cơ bản của lý thuyết điều khiển LT ĐKTĐ cung cấp những cơ sở lý thuyết điều khiển cơ bản vào việc điều khiển các quá trình khác nhau của hệ thống mà không cần tới sự can thiệp của con người. LT ĐKTĐ là một nhánh liên ngành của kỹ thuật và toán học, liên quan đến hành vi của các hệ thống động lực. Đầu ra mong muốn của một hệ thống được gọi là giá trị đặt trước. Khi một hoặc nhiều biến đầu ra của hệ thống cần tuân theo một giá trị đặt trước theo thời gian, một bộ điều khiển các đầu vào cho hệ thống để đạt được hiệu quả đầu ra mong muốn. Môn học LT ĐKTĐ chủ yếu đề cập đến lý thuyết điều khiển kinh điển là phân tích và thiết kế hệ thống tuyến tính bất biến, một ngõ vào ‒ một ngõ ra. 1.3. Lịch sử phát triển của lý thuyết điền khiển tự động Mặc dù nhiều dạng của hệ thống điều khiển có từ thời cổ đại, nghiên cứu chính thức của lĩnh vực này bắt đầu với một phân tích động học của hệ điều tốc li tâm, được thực hiển bởi nhà vật lý James Clerk Maxwell vào năm 1868 với tựa đề On Governors(hệ điều tốc). Tài liệu này miêu tả và phân tích hiện tượng "dao động", trong đó sự trễ pha trong hệ thống có thể dẫn đến trạng thái bù quá mức và không ổn định. Điều này tạo ra sự hấp dẫn trong đề tài này, trong những bạn học với Maxwell, Edward John Routh tổng quát hóa các kết quả của Maxwell cho lớp tổng quát trong các hệ tuyến tính. Sau đó vào năm 1877, Adolf Hurwitz đã phân tích sự ổn định của hệ thống sử dụng phương trình vi phân, kết quả là ta có được định lý Routh-Hurwitz. Vào Chiến tranh thế giới thứ II, lý thuyết điều khiển đã là một phần quan trọng của hệ thống kiểm soát hỏa lực, hệ thống dẫn đường và điện tử học. Cuộc chạy đua không gian cũng phụ thuộc vào sự chính xác của việc điều khiển tàu không gian. Tuy nhiên, lý thuyết điều khiển cũng được sử dụng trong các lĩnh vực khác càng ngày càng nhiều như trong kinh tế học. Ngoài ra, còn có những nhà khoa học sau đây đã đóng góp vào sự phát triển của lý thuyết điều khiển tự động, bao gồm: KHOA ĐIỆN – TỰ ĐỘNG HÓA 2
  9. Chương 1: Tổng quan hệ thống điều khiển tự động + Pierre-Simon Laplace (1749-1827) phát minh ra phép biến đổi Z trong công trình về lý thuyết xác suất của ông, bây giờ được sử dụng để giải quyết các bài toán rời rạc trong miền thời gian của lý thuyết điều khiển. Phép biến đổi Z là phép biến đổi tương đương trong miền giời gian rời rạc của phép biến đổi Laplace được đặt tên theo chính tên ông. + Alexander Lyapunov (1857–1918), đánh dấu sự khởi đầu của lý thuyết bền vững. + Harold S. Black (1898–1983), phát minh ra khái niệm bộ khuếch đại phản hồi âm vào năm 1927. Ông đã thành công trong việc phát triển các bộ khuếch đại phản hồi âm bền vững vào những năm 1930. + Harry Nyquist (1889–1976), phát triển tiêu chuẩn ổn định Nyquist cho hệ thống phản hồi vào những năm 1930. + John R. Ragazzini (1912–1988) giới thiệu điều khiển kỹ thuật số và biến đổi z vào những năm 1950. + Lev Pontryagin (1908–1988) giới thiệu nguyên lý cực đại. 1.4. Cơ sở hệ thống tự động 1.4.1. Cơ sở điều khiển hệ thống tự động theo phương pháp cổ điển Cơ sở toán học dùng để phân tích và thiết kế hệ thống: + Hàm truyền. Đặc điểm: + Đơn giản + Kỹ thuật thiết kế trong miền tần số. + Áp dụng cho hệ tuyến tính, bất biến, 1 ngõ vào ‒ 1 ngõ ra (SISO). Các phương pháp phân tích và thiết kế hệ thống: + Đáp ứng tần số (đáp ứng biên độ và đáp ứng pha): phương pháp Nyquist, Bode. + Phương pháp quỹ đạo nghiệm số. Bộ điều khiển: Các khâu hiệu chỉnh đơn giản. + Hiệu chỉnh sớm trễ pha. + Hiệu chỉnh vi tích phân tỉ lệ PID (Proportional Integral Derivative). 1.4.2. Cơ sở điều khiển hệ thống tự động theo phương pháp hiện đại Cơ sở toán học dùng để phân tích và thiết kế hệ thống: + Phương trình trạng thái. Đặc điểm: + Phức tạp. + Kỹ thuật thiết kế dựa trên miền thời gian. KHOA ĐIỆN – TỰ ĐỘNG HÓA 3
  10. Chương 1: Tổng quan hệ thống điều khiển tự động + Có thể áp dụng cho hệ thống phi tuyến, biến đổi theo thời gian, hệ (MIMO). + Ban đầu được phát triển chủ yếu cho hệ tuyến tính, sau đó được mở rộng cho hệ phi tuyến bằng cách sử dụng lý thuyết của Lyapunov. Các phương pháp phân tích và thiết kế hệ thống: + Phân bố cực. + Điều khiển tối ưu. + Điều khiển thích nghi. + Điều khiển bền vững. Bộ điều khiển: + Hồi tiếp trạng thái 1.4.3. Các phần tử cơ bản của hệ thống điều khiển tự động Mọi hệ thống điều khiển tự động đều bao gồm 3 bộ phận cơ bản: + Bộ điều khiển (Controller device). + Đối tượng điều khiển (Object device). + Thiết bị đo lường (Measuring device) – Cảm biến (Sensor) Hình 1.1. Sơ đồ tổng quát hệ thống điều khiển tự động + u(t) Tín hiệu vào + e(t) Sai lệch điều khiển + x(t) Tín hiệu điều khiển + y(t) Tín hiệu ra + z(t) Tín hiệu phản hồi 1.4.3.1. Đối tượng điều khiển Đối tượng điều khiển chính là mục tiêu thực ta cần tác động để đạt được các yêu cầu mong muốn. Trên đây từ “đối tượng” mang tính khái quát chung, cần phân biệt rõ “đối tượng” và “hệ thống”. Thông thường “hệ thống” mang tính bao hàm, có nghĩa có thể bao gồm nhiều đối tượng. Đối tượng điều khiển thường là các động cơ: + Động cơ DC: với loại động cơ này có đặc tính ngẫu lực lớn, dễ điều khiển… KHOA ĐIỆN – TỰ ĐỘNG HÓA 4
  11. Chương 1: Tổng quan hệ thống điều khiển tự động + Động cơ AC: loại này hiện rất thông dụng và thường được điều khiển dùng biến tần. + Động cơ bước: là loại động cơ sử dụng nguồn DC với dạng xung điều khiển cho từng cực, loại động cơ này làm việc có độ chính xác cao được ứng dụng rất nhiều trong ĐK. + Động cơ servo: là loại động cơ AC hay DC có mạch điều khiển hồi tiếp về khi làm việc (ĐK vòng kín) loại động cơ này có công suất tương đối lớn và độ chính xác khá cao. 1.4.3.2. Bộ điều khiển Bộ điều khiển là thành phần quan trọng quyết định khả năng hoạt động và độ chính xác của hệ thống. Thường được tích hợp dưới dạng các board mạch điều khiển, có thể có các loại: + IC diều khiển trung tâm (CPU) kết hợp với các card điều khiển. + Các thiết bị điều khiển khả trình PLC + Vi xử lý (hệ thống nhúng)… + Máy tính thông qua các card giao tiếp điều khiển (DSP, PCI…) + Sử dụng các bộ điều khiển thông qua biến tần. 1.4.3.3. Thiết bị đo lường Cảm biến (Sensor) là thiết bị chuyển các đại lượng vật lý thành các tín hiệu điện cung cấp cho hệ thống nhằm nâng cao khả năng linh hoạt và độ chính xác trong điều khiển. Như vậy hệ thống điều khiển tự động chính là một hệ thống điều khiển kín với vòng hồi tiếp (Feedback) được thực hiện từ tín hiêu thu về từ cảm biến. Các loại cảm biến thường gặp như: + Cảm biến quang. + Cảm biến vị trí và dịch chuyển. + Cảm biến vận tốc. Các cảm biến trên có thể cho tín hiệu tương tự (Analoge) hoặc tín hiệu số (Digital), ngoài ra còn sử dụng các bộ mã hoá vị trí, mã hoá góc dịch chuyển Encoder… 1.5. Ví dụ một số hệ thống điều khiển tự động trong thực tế Ví dụ 1.1 Hệ thống điều khiển động cơ AC ba pha. Bộ điều khiển: là card điều khiển trung tâm điều khiển giao tiếp máy tính, điều khiển biến tần, và giao tiếp vào ra trên bộ hiển thị số. Đối tượng điều khiển: là động cơ AC ba pha. Thiết bị đo lường: là thành phần hồi tiếp là cảm biến từ hall. KHOA ĐIỆN – TỰ ĐỘNG HÓA 5
  12. Chương 1: Tổng quan hệ thống điều khiển tự động Ví dụ 1.2 Mô hình điều khiển động cơ. Đối tượng điều khiển là động cơ DC. Bộ điều khiển: là mạch điều khiển được tích hợp từ nhiều mạch điều khiển tốc độ, điều khiển giao tiếp hiển thị trên PC và giao tiếp thành phần hồi tiếp để hiệu chỉnh sữa sai. Thiết bị đo lường: là encoder lấy tín hiệu tốc độ từ trục động cơ quay về bộ điều khiển. KHOA ĐIỆN – TỰ ĐỘNG HÓA 6
  13. Chương 1: Tổng quan hệ thống điều khiển tự động Ví dụ 1.3 Mô hình điều khiển bồn nước. Đối tượng điều khiển: là mực nước trong bồn. Thiết bị đo lường: là cảm biến điện dung kiểm tra mực nước trong bồn Bộ ĐK: là mạch dùng chip vi ĐK lập trình ĐK cho mực nước trong bồn theo yêu cầu. Ví dụ 1.4 Hệ thống điều khiển động cơ dùng biến tần Đối tượng điều khiển: động cơ AC hoặc DC. Bộ điều khiển: DC Driver hay AC Driver, còn gọi là biến tần (Inverter) + Ðiều khiển thay đổi tốc độ động cơ. + Ổn định tốc độ động cơ. + Khởi động mềm và dừng mềm động cơ. + Hạn dòng khởi động. + Bảo vệ quá tải, kẹt tải. + Tiết kiệm năng lượng. Thiết bị đo lường: là encoder lấy tín hiệu tốc độ từ trục động cơ quay về bộ điều khiển. KHOA ĐIỆN – TỰ ĐỘNG HÓA 7
  14. Chương 1: Tổng quan hệ thống điều khiển tự động Ví dụ 1.5 Hệ thống điều khiển lò nhiệt Ðối tượng điều khiển: nhiệt độ trong lò nhiệt với yêu cầu phải được giữ ổn định. Bộ điều khiển là một thiết bị tự động được chế tạo làm việc theo chức năng và yêu cầu thực tế như chuyển nhiệt độ từ lò nhiệt và hiển thị lên màn hình hiển thị và gởi tín hiệu điều khiển để điều khiển lò nhiệt ổn định nhiệt độ. Thiết bị đo lường: được dùng là loại cảm biến nhiệt. Ví dụ 1.6 Hệ thống điều khiển mực chất lỏng Ðối tượng điều khiển: Hệ thống điều khiển mực chất lỏng thường gặp trong các quá trình công nghiệp như chế biến thực phẩm, nước giải khác, các hệ thống xử lý nước thải… Bộ điều khiển: điều khiển mực chất lỏng, điều khiển lưu lượng chất lỏng. Thiết bị đo lường: + Cảm biến đo dịch chuyển: biến trở, Encoder. + Cảm biến áp suất. + Cảm biến điện dung. KHOA ĐIỆN – TỰ ĐỘNG HÓA 8
  15. Chương 1: Tổng quan hệ thống điều khiển tự động CÂU HỎI VÀ BÀI TẬP CHƯƠNG 1 Bài tập 1.1 Hệ thống điều khiển tự động có thể phân loại như thế nào? Bài tập 1.2 Hệ thống điều khiển có mấy phần tử cơ bản? Bài tập 1.3 Hãy nêu các quy tắc điều khiển cở bản để điều khiển một hệ thống điều khiển? Bài tập 1.4 Nêu các bước thiết lập một hệ thống điều khiển? KHOA ĐIỆN – TỰ ĐỘNG HÓA 9
  16. Chương 2: Khái niệm cơ bản và cơ sở toán học trong lý thuyết điều khiển tự động CHƯƠNG 2: KHÁI NIỆM CƠ BẢN VÀ CƠ SỞ TOÁN HỌC TRONG LÝ THUYẾT ĐIỀU KHIỂN TỰ ĐỘNG Giới thiệu: Chương 2 của giáo trình tập trung giới thiệu về các cơ sở toán học để giải bài toán điều khiển tự động. Trình bày các nguyên tắc biến đổi Laplace các phép tính ma trận để giải quyết bài toán điều khiển tự động. Mục tiêu: - Mô tả được khái niệm cơ bản về tín hiệu điều khiển. - Trình bày được phép biến đổi Laplace trong điều khiển tự động. - Giải được các bài toán ma trận trong hệ thống điều khiển tự động. - Có ý thức tự giác, tính kỷ luật cao, tinh thần trách nhiệm trong công việc, có tinh thần hợp tác, giúp đỡ lẫn nhau. Nội dung chính: 2.1. Khái niệm về tín hiệu 2.1.1. Định nghĩa tín hiệu Tín hiệu là diễn biến của một đại lượng vật lý chứa đựng tham số thông tin hay dữ liệu và có thể truyền dẫn được. Theo quan điểm toán học thì tín hiệu được coi là một hàm của thời gian. Trong các lĩnh vực kỹ thuật, các loại tín hiệu thường dùng là điện, quang, khí nén, thủy lực và âm thanh. Các tham số sau đây thường được dùng trực tiếp, gián tiếp hay kết hợp để biểu thị nội dung thông tin hay dữ liệu: Biên độ (điện áp, dòng…); Tần số, nhịp xung, độ rộng của xung, sườn xung; Pha, vị trí xung. 2.121. Phân loại tín hiệu Không phân biệt tính chất vật lý của tín hiệu (điện, quang, khí nén…) thì ta có thể phân loại tín hiệu dựa theo tập hợp giá trị của tham số thông tin hoặc dựa theo diễn biến thời gian thành những dạng sau: Tín hiệu rời rạc (về mặt thời gian) là tín hiệu chỉ xác định trên 1 tập rời rạc của thời gian (tập những thời điểm rời rạc). Dưới dạng toán học, tín hiệu rời rạc mang giá trị thực (hoặc phức) có thể được xem là 1 hàm liên kết từ tập số tự nhiên đến tập số thực (hoặc phức). Tín hiệu liên tục (về mặt thời gian) là tín hiệu mang giá trị thực (hoặc phức) xác định với mọi thời điểm trong một khoảng thời gian, trường hợp phổ biến nhất là một khoảng thời gian vô hạn. Chú ý: Một hàm không liên tục về mặt toán học, ví dụ như hàm sóng vuông (square- wave) hay sóng răng cưa (sawtooth-wave), vẫn có thể là hàm liên tục về mặt thời gian. KHOA ĐIỆN – TỰ ĐỘNG HÓA 10
  17. Chương 2: Khái niệm cơ bản và cơ sở toán học trong lý thuyết điều khiển tự động Tín hiệu tương tự là tín hiệu có giá trị thay đổi liên tục theo thời gian. Tín hiệu số là tín hiệu mà các giá trị tham số thông tin của một tín hiệu được biểu diễn bằng mã nhị phân. Hệ thống điều khiển thực tế rất đa dạng và có bản chất vật lý khác nhau. Trong giáo trình này chỉ giới hạn nội dung nghiên cứu là hệ thống tuyến tính bất biến liên tục. Quan hệ giữa tín hiệu vào và tín hiệu ra của một hệ thống tuyến tính bất biến liên tục rất phức tạp, cần có cơ sở chung để phân tích, thiết kế các hệ thống điều khiển có bản chất vật lý khác nhau. Cơ sở đó chính là toán học. 2.2. Phép biến đổi Laplace Trong hệ thống liên tục người ta hay sử dụng phép biến đổi Laplace để biến đổi từ miền thời gian sang miền tần số phức. Các phương trình vi tích phân sẽ chuyển đổi thành các phương trình đại số thông thường. 2.2.1. Biến đổi Laplace ‒ tìm hàm ảnh khi biết hàm gốc Định nghĩa: Gọi F(s) là biến đổi Laplace của hàm f(t), khi đó ta có:   f (t )e  st F ( s )  L[ f (t )]  dt 0 Trong đó: s − là biến phức (biến Laplace). L − là toán tử Laplace. F(s) − là biến đổi Laplace của hàm f(t). 2.2.2. Các tính chất của phép biến đổi Laplace Tính tuyến tính: L[a.f(t)]= a.L[f(t)] = a.F(s) Tính chất xếp chồng: L[f1(t)  f2(t)] = L[f1(t)]  L[f2(t)] = F1(s)  F2(s) Định lý chậm trễ: L[ f(t ‒ a) ] = e‒as F(s) a là số thực và f(t ‒ a) = 0 khi 0 < t < a Ảnh của đạo hàm: L[f'(t) ] = sF(s) ‒ f(0+) Ảnh của tích phân: L[  f (t )dt ]  F (s)   f (0) s s Tính chất giá limtrịsF ( s )  lim f (t )  lim cuối: ) ( s )  lim f (t )  f () f (sF s 0 t  s 0 t  Ví dụ 2.1 Tìm ảnh của hàm hàm f(t) = cosat trong đó a là hằng số. Theo công thức Ơle ta có: e jat  e  jat 1 jat 1  jat cos at   e  e 2 2 2 Thực hiện phép biến đổi Laplace: 1  1 1 1 s  ja  s  ja Lcos at  L e jat  e  jat   1 1 1 s    2 2  2 s  ja 2 s  ja 2 s a s  a2 2 2 2 KHOA ĐIỆN – TỰ ĐỘNG HÓA 11
  18. Chương 2: Khái niệm cơ bản và cơ sở toán học trong lý thuyết điều khiển tự động 2.2.3. Biến đổi Laplace ngược ‒ tìm hàm gốc khi biết hàm ảnh Biến đổi Laplace ngược là xác định tín hiệu f(t) từ ảnh Laplace F(s) của nó. c  j 1  1 L [ F ( s)]  f (t )  F ( s)e st ds 2j c  j - Tín hiệu nấc đơn vị − step tín hiệu vào HT điều khiển ổn định hóa 0 víi t
  19. Chương 2: Khái niệm cơ bản và cơ sở toán học trong lý thuyết điều khiển tự động t n1e t 1 Hàm mũ bội e (n  1)! (s   )n  Hàm sin sint s  2 2 s Hàm cosin cost s  2 2  Hàm sin theo hàm mũ sin(t)e−t (s   ) 2   2 s  Hàm cosin theo hàm mũ cos(t)e−t (s   ) 2   2 2.2.4. Các bước thực hiện biến đổi Laplace ngược Bước 1: Phân tích F(s) thành tổng các hàm cơ bản. l rk Aki B (s   k )  Ck k F (s)  A     k k 1 i 1 ( s a k ) i ( s   k ) 2   k2 Trong đó: A, Aki, Bk, Ck − là các hằng số. ak − là điểm cực thực bội rk  k  jk − là điểm cực phức của F(s) mà tại đó F(s) = ± ∞. Bước 2: Xác định hàm gốc cho từng phần tử dựa vào bảng biến đổi Laplace. 1 Ví dụ 2.2 Tìm hàm gốc f(t) của ảnh Laplace sau: F ( s)  s ( s  1) 2 Giải Bước 1 ‒ Phân tích thành tổng các phân thức tối giản: 1 1 1 F (s)    2 s 1 s s Bước 2 ‒ Xác định hàm gốc cho từng thành phần: f(t) = e–t – 1(t) + t.1(t) 2.2.5. Biến đổi Laplace ngược hàm hữu tỷ Hàm hữu tỷ là dạng thường gặp trong điều khiển, chủ yếu ta xét biến đổi Laplace ngược của hàm hữu tỷ: B( s ) b0  b1 s    bm s m F ( s)   A( s ) a0  a1 s    an s n Trường hợp 1: Nghiệm của mẫu thức A(s) là thực phân biệt. 2 Ví dụ 2.3 Tìm hàm gốc f(t) của ảnh Laplace sau: X ( s)  ( s  1)(s  2) KHOA ĐIỆN – TỰ ĐỘNG HÓA 13
  20. Chương 2: Khái niệm cơ bản và cơ sở toán học trong lý thuyết điều khiển tự động Giải Mẫu thức A(s) có 2 nghiệm s1 = ‒1 và s2 = ‒2. Ta phân tích X(s) như sau: 2 X ( s)  ( s  1)(s  2) Nghiệm của mẫu thức là riêng biệt nên từng phân thức sẽ có bậc là 1: 2 K K X ( s)   1  2 ( s  1)(s  2) s  1 s  2 Để tìm K1 ta nhân với (s+1) để tách K1 riêng ra: 2 ( s  1) K 2  K1  ( s  2) ( s  2) Sau đó cho s → ‒1, rút ra được K1 = 2. Làm tương tự và sau đó cho s → ‒2 ta được K2 = ‒2. 2 2 2 Lúc đó: X ( s)    ( s  1)(s  2) s  1 s  2 Thực hiện biến đổi Laplace ngược của X(s) ta được: x(t )  2e t  2e 2t TỔNG QUÁT Khi mẫu số của F(s) có nghiệm thực và riêng biệt, ta thực hiện như sau: B( s) B( s) F (s)   A( s ) ( s  p1 )(s  p 2 )( s  p m )( s  p n ) K1 K2 Km Kn     ( s  p1 ) ( s  p 2 ) (s  pm ) (s  pn ) Nếu bậc của tử nhỏ hơn bậc của mẫu ta thực hiện tìm các hệ số Ki như sau: + Nhân hai vế với (s + pi) để tìm hệ số Ki. + Cho s → ‒pi ta rút ra được Ki. Trường hợp 2: Mẫu số có nghiệm bội. 2 K K2 K3 Ví dụ 2.4 Tìm hàm gốc f(t) của ảnh Laplace sau: X ( s)   1   ( s  1)(s  2) 2 s  1 ( s  2) 2 ( s  2) Giải Mẫu thức A(s) có 3 nghiệm s1 = ‒1 và s2,3 = ‒2. Ta phân tích X(s) như sau: 2 K1 K2 K3 X ( s)     ( s  1)(s  2) 2 s  1 ( s  2) 2 ( s  2) 2 Để tìm hệ số K1, ta tính như sau : K1  2 ( s  2) 2 s 1 KHOA ĐIỆN – TỰ ĐỘNG HÓA 14