Xem mẫu

  1. ĐÁP ÁN ĐỀ THI TUYỂN SINH ĐẠI HỌC 2010 MÔN TOÁN – KHỐI A I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH Câu I: y = x − 2x + ( 1 − m ) x + m 3 2 1) Bạn đọc tự giải. 2) Phương trình hoành độ giao điểm của đồ thị hàm số (1) và Ox x 3 − 2x 2 + ( 1 − m ) x + m = 0 ⇔ ( x − 1) ( x 2 − x − m ) = 0  x − 1 = 0 (2) ⇔ g(x) = x − x − m = 0 (3) 2 Gọi x1 là nghiệm pt (2) và x2, x3 là nghiệm pt (3). ∆ > 0 1 + 4m > 0    Yê u cầu bài toán : g(1) ≠ 0 ⇔ m ≠ 0 x 2 + x 2 + x 2 < 4  1 + ( x 2 + x 3 ) − 2x 2 x 3 < 0 2  1 2 3   −1  m> 4  −1  −1   < m ≠ 0  < m
  2. cosx( 1+ sinx + cos2x) ( sinx + cosx) ⇔ = cosx cosx + sinx ⇔ 1+ sinx + cos2x = 0 ⇔ 2cos2 x + sinx = 0 ( ⇔ 2 1− sin2 x + sinx = 0 )  1+ 17 sinx = > (loaï ) 1 i 4 ⇔ 2sin x − sinx − 2 = 0 ⇒  2  1− 17 sinx = (thoû ñk) a  4   1− 17   x = arcsin  + k2π   4    ⇒  1− 17  ( k ∈ Z) .   x = π − arcsin  + k2π  4     x− x 2) ≥1 ( 1− 2 x − x + 1 2 )  1  3 3 2 ( ) Ta có: 2 x − x + 1 = 2 x −  +  ≥ ⇒ 1− 2 x − x + 1 < 0 2  2  4 2 2 ( )   ( ) bpt ⇔ x − x ≤ 1− 2 x2 − x + 1 ⇔ 2 x2 − x + 1 ≤ x + ( 1− x)( )  ( )  2 ⇔ 2( 1− x) + x  ≤ x + ( 1− x) 2    x + ( 1− x) ≥ 0   x + 1− x ≥ 0  ⇔ ⇔ 3− 5 ⇒ x= ( ) 2  ( 1− x) − x ≤ 0 1− x = x  2  Câu III
  3. 1 x 2 + e x + 2x 2e x x ( 1 + 2e x ) + e x 1 2 1  2 ex  I=∫ dx = ∫ dx = ∫  x +  dx 0 1 + 2e x 0 1 + 2e x 0 1 + 2e x  1 1 1 3 1 1 1  1 + 2e  = x + ln 1+ 2e x = + ln  3 2  3   3 0 2 0 1 1  1 + 2e  Vậy I = + ln   3 2  3  B a C Câu IV a 1 2 + Ta có: SH ⊥ (ABCD)  VS.CMND = SH.SCMND 3 M a 2 a 2 5a 2 SCMND = SABCD − SCBM − SAMD = a − − = 2 a 2 H 4 8 8 D 1 5a 2 a 3 5 3 A a ⇒ VS.CMND = ⋅ a 3 ⋅ = (đvtt) 2 N 3 8 24 S + Ta có : ∆CDN = ∆DAM CN ⊥ DM ⇒ ⇒ DM ⊥ (SCN) ⇒ DM ⊥ SC SH ⊥ DM Kẻ HK ⊥ SC  HK ⊥ MD  HK = d(DM, SC) 1 1 1 2 = 2 + HK SH HC2 K SH = a 3  CD 4 a4 4a 2 → CH = 2 = = với CN.CH = CD 2  CN 2 5a 2 5 B C  4 M 1 1 5 19 2a 3 ⇒ 2 = 2+ 2= 2 ⇒ HK = . HK 3a 4a 12a 19 H Câu V A N D
  4. ( ) ( )  4x2 + 1 x + ( y − 3) 5− 2y = 0  4x2 + 1 x = ( 3− y) 5− 2y (1)    ⇔ 4x2 + y2 + 2 3− 4x = 7  4x2 + y2 + 2 3− 4x = 7 (2)   3 x ≤ 4  + Điều kiện:  y ≤ 5   2  39  39 VT(1) = 4x + x ≤ VP(1) = ( 3− y) 5− 2y ≤ 3 (1) ⇒  16 ⇒  16 ⇒ y ≥ 0 VP(1) ≥ 0   x ≥ 0  3 0 ≤ x ≤ 4  Suy ra  0 ≤ y ≤ 5   2  3  1  ( 2 ) + Xét f1(x) = 4x + 1 x tăng trên  0 ;  , f   = 1  4  2   5 g1(y) = ( 3− y) 5− 2y giảm trên  0 ;  , g( 2) = 1  2  3 + f2(x) = 4x2 + 2 3− 4x giảm trên  0 ;   4  5 g2(y) = y2 tăng trên  0 ;   2 1 + Với 0 ≤ x ≤ : (1 ⇒ g1(y) = f1(x) < 1⇒ y > 2 ) 2   1 f2(x) > f2   = 3 ⇒  2 ⇒ VT(2) > VP(2) g (y) > g (2) = 4  2 2
  5. 1 3  1 + Với < x ≤ : (1 ⇒ g1(y) = f1(x) > f   = g(2) → y < 2 ) 2 4  2   1 f2(x) < f2   = 3 ⇒  2 ⇒ VT(2) < VP(2) g (y) < g(2) = 4  2 1 + x= ⇒ y = 2. 2  1 x = Vậy nghiệm:  2 y = 2  II – PHẦN RIÊNG A. THEO CHƯƠNG TRÌNH CHUẨN Câu VIa 1) (d1): 3x + y = 0; (d2 ): 3x − y = 0. + d1 ∩ d2 = 0( 0;0) 3. 3 − 1 · 1 ⇒ AOC = 600 (∆AOC vuông tại A). + cos( d ;d ) = = 1 2 2.2 2 2R ⇒ AC = 2R ; AB = R ; BC = R 3 ; OA = . 3 3 AB.BC 3 2 Theo gt: SABC = ⇒ = ⇔ R = 1⇒ OA = 2 2 2 3 ( ) 4 4 Mà A ∈ ( d1 ) ⇒ A a;− 3a ⇒ OA 2 = ⇔ a2 + 3a2 = ⇔ 4a2 = 3 3 4 3 1 ⇔ a= (a > 0). 3   1  qua A  ;−1 4 + (d3):  3  ⇒ (d3): x − 3y − = 0. (d ) ⊥ (d ) 3  3 1
  6.  3t − 4  + T  t; ∈d  3  3   2 7  3t − 4  7 + OT 2 = OA 2 + AT 2 = ⇔ t2 +   = 3  3  3    5 3  t1 = ⇔ 12t2 − 8 3t − 5 = 0 ⇒  6  − 3  t2 =  6 2 2  5 3  1 2  3  3 2 Vậy ( T1 ) :  x −  +  y +  = 1 và ( T2 ) :  x +  +  y+  =1  6   2  6   2     x −1 y z + 2 2) ∆ : = = ; ( P ) : x − 2y + z = 0 2 1 −1  x = 1 + 2t  Phương trình tham số: ∆ :  y = t (t ∈ ¡ )  z = −2 − t   x = 1 + 2t  t = −1 y = t  x = −1   + Vì C = ∆ ∩ ( P ) . Tọa độ điểm C thỏa hệ:  ⇒ z = −2 − t  y = −1  x − 2y + z = 0 z = −1   ⇒ C ( −1; −1; −1) + M ( 1 + 2t; t; −2 − t ) ∈ ∆ , MC2 = 6 ⇔ ( 2t + 2 ) + ( t + 1) + ( − t − 1) = 6 2 2 2  t = 0 → M1 ( 1;0; −2 ) ⇔ 6t 2 + 12t = 0 ⇔   t = −2 → M 2 ( −3; −2;0 )  1− 0 − 2 6 6 + d ( M1 , ( P ) ) = = = d ( M 2 , ( P ) ) . Vậy d ( M, ( P ) ) = . 1+ 4 +1 6 6 Câu VIIa
  7. Tìm phần thực, ảo của z: ( ) ( 1 − 2i ) 2 z= 2 +i = ( 2 + 2 2i + i ) ( 1 − 2i ) 2 = ( 1 + 2 2i ) ( 1 − 2i ) = 1 − 2i + 2 2i − 4i 2 = 5 + 2i ⇒ z = 5 − 2i Phần thực của z là a = 5; phần ảo của z là b = − 2 . B. THEO CHƯƠNG TRÌNH NÂNG CAO Câu VIb A 1) Đặt d : x + y − 4 = 0 + A∈∆ ⊥ d ⇒ ∆ : x − y = 0 + Gọi H = ∆ ∩ d ⇒ H ( 2;2 ) E M H + Gọi I là trung điểm BC d suy ra H là trung điểm IA  I(-2; -2) + Đường thẳng (BC) qua I và song song d  (BC): x + y + 4 = 0. B( b ;− b − 4)  B C + B,C ∈ BC ⇒  I C(c ;−c − 4)  uuur uuu r + AB = ( b − 6; −b − 10 ) ; EC = ( c − 1; −c − 1) . uuu uuu r r AB.EC = 0  ( b − 6) ( c − 1) + ( b + 10) ( c + 1) = 0  Ta có:  ⇔ I laø  trung ñieå BC m  b + c = −4   bc + 2c + 8 = 0 c = 2 c = −4 ⇔ ⇔ ∨  b + c = −4  b = −6  b = 0 ⇒ B( −6;2) ;C ( 2;−6) hay B( 0;−4) ;C ( −4;0) . x+2 y−2 z+3 2) A ( 0;0; −2 ) , ∆ : = = 2 3 2
  8. r + (d) qua M(-2;2;-3), vtcp: a = ( 2;3;2 ) uuuur + MA = ( 2; −2;1) r uuuur r uuuu r +  a;MA  = ( 7;2; −10 ) ⇒  a;MA  = 49 + 4 + 100 = 153     r + a = 4 + 9 + 4 = 17 r uuuu r a;MA    153 d ( A, ∆ ) = r = = 3. a 17 BC2 Mà R = d (A,∆ ) + 2 = 9+ 16 = 25 2 4 Suy ra mặt cầu ( S) : x 2 + y 2 + ( z + 2 ) = 25 2 Câu VIIb Ta có ( ) ( ) 3 1 − 3i 1 − 3 3i + 3.3.i 2 − 3i3 −8 − 3 3i + 3i ( 1 + i ) z= = = 1− i 1− i 2 −8 − 8i − 3 3i − 3 3i 2 + 3i + 3i 2 −11 + 3 3 − 5i − 3 3i = = 2 2 −11 + 3 3 5+3 3 ⇒a= ; b= 2 2 Ta có: z + iz = a − bi + i ( a + bi ) = a − b + ( a − b ) i 2 2  −11 + 3 3 5 + 3 3   −11 + 3 3 5 + 3 3  =  −  + −  = 8 +8 =8 2 2 2  2 2   2 2 
nguon tai.lieu . vn