Xem mẫu

  1. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 1 ============================================= TRƯ NG ðHSP HÀ N I ð THI TH ð I H C L N I NĂM 2010 TRƯ NG THPT CHUYÊN – ðHSP Môn thi: TOÁN Th i gian làm bài: 180 phút, không k th i gian giao ñ ========================================== Câu 1. ( 2,0 ñi m ) Cho hàm s y = 2x3 + 9mx2 + 12m2x + 1, trong ñó m là tham s . 1. Kh o sát s bi n thiên và v ñ th c a hàm s ñã cho khi m = - 1. 2. Tìm t t c các giá tr c a m ñ hàm s có c c ñ i t i xCð, c c ti u t i xCT th a mãn: x2Cð= xCT. Câu 2. ( 2,0 ñi m ) 1. Gi i phương trình: x + 1 + 1 = 4x2 + 3 x . π 5π 2. Gi i phương trình: 5cos(2x + ) = 4sin( - x) – 9 . 3 6 Câu 3. ( 2,0 ñi m ) x ln( x 2 + 1) + x 3 1. Tìm h nguyên hàm c a hàm s : f(x) = . x2 +1 2. Cho hình chóp S.ABCD có SA =x và t t c các c nh còn l i có ñ dài b ng a. Ch ng minh r ng ñư ng th ng BD vuông góc v i m t ph ng (SAC). Tìm x theo a a3 2 ñ th tích c a kh i chóp S.ABCD b ng . 6 Câu 4. ( 2,0 ñi m ) x +1 1. Gi i b t phương trình: (4 – 2.2 – 3). log2x – 3 > 4 - 4x. x x 2 2. Cho các s th c không âm a, b.Ch ng minh r ng: 3 3 1 1 ( a2 + b + ) ( b2 + a + ) ≥ ( 2a + ) ( 2b + ). 4 4 2 2 Câu 5. ( 2,0 ñi m ) Trong m t ph ng v i h t a ñ Oxy, cho ba ñư ng th ng : d1 : 2x + y – 3 = 0, d2 : 3x + 4y + 5 = 0 và d3 : 4x + 3y + 2 = 0. 1. Vi t phương trình ñư ng tròn có tâm thu c d1 và ti p xúc v i d2 và d3. 2. Tìm t a ñ ñi m M thu c d1 và ñi m N thu c d2 sao cho OM + 4 ON = 0 . ………………………………..H t………………………………….. ==============================================
  2. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 2 ============================================= ==============================================
  3. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 3 ============================================= ==============================================
  4. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 4 ============================================= ==============================================
  5. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 5 ============================================= TRƯ NG ðHSP HÀ N I ð THI TH ð I H C L N II NĂM 2010 TRƯ NG THPT CHUYÊN – ðHSP Môn thi: TOÁN _______________ Th i gian làm bài: 180 phút, không k th i gian phát ñ ========================================== Ngày thi: 07 – 3 – 2010. 2x − 1 Câu 1. ( 2,0 ñi m). Cho hàm s y= . x −1 1. Kh o sát s bi n thiên và v ñ th ( C ) c a hàm s . 2. L p phương trình ti p tuy n c a ñ th ( C ) mà ti p tuy n này c t các tr c Ox , Oy l n lư t t i các ñi m A và B th a mãn OA = 4OB. Câu 2. ( 2,0 ñi m) sin x + cos x 1. Gi i phương trình: + 2tan2x + cos2x = 0. sin x − cos x  x 3 y (1 + y ) + x 2 y 2 (2 + y ) + xy 3 − 30 = 0  2. Gi i h phương trình:  2  x y + x(1 + y + y 2 ) + y − 11 = 0  Câu 3. ( 2,0 ñi m) 1+ x 1 1. Tính tích phân: I= ∫ dx . 0 1+ x 2. Cho lăng tr ñ ng ABC.A’B’C’ có ñáy ABC là tam giác vuông v i AB = BC = a, 1 c nh bên A A’ = a 2 . M là ñi m trên A A’ sao cho AM = AÂ ' . Tính th tích c a kh i t 3 di n MA’BC’. Câu 4. ( 2,0 ñi m) 1. Tìm t t c các giá tr c a tham s a ñ phương trình sau có nghi m duy nh t: log5 (25x – log5a ) = x. 2. Cho các s th c dương a, b, c thay ñ i luôn th a mãn a + b + c = 1. a2 + b b2 + c c2 + a Ch ng minh r ng : + + ≥ 2. b+c c+a a+b Câu 5. ( 2,0 ñi m). Trong m t ph ng v i h t a ñ Oxy, cho ñi m E(-1;0) và ñư ng tròn ( C ): x2 + y2 – 8x – 4y – 16 = 0. 1. Vi t phương trình ñư ng th ng ñi qua ñi m E c t ( C ) theo dây cung MN có ñ dài ng n nh t. 2. Cho tam giác ABC cân t i A, bi t phương trình ñư ng th ng AB, BC l n lư t là: x + 2y – 5 = 0 và 3x – y + 7 = 0. Vi t phương trình ñư ng th ng AC, bi t r ng AC ñi qua ñi m F(1; - 3). ------------------------------------------------ H t---------------------------------------------- D ki n thi th l n sau vào các ngày 27,28 tháng 3 năm 2010. ==============================================
  6. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 6 ============================================= ==============================================
  7. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 7 ============================================= ==============================================
  8. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 8 ============================================= ==============================================
  9. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 9 ============================================= TRƯ NG ðHSP HÀ N I ð THI TH ð I H C L N III NĂM 2010 TRƯ NG THPT CHUYÊN – ðHSP Môn thi: TOÁN _______________ Th i gian làm bài: 180 phút, không k th i gian phát ñ ========================================== Ngày thi: 28 – 3 – 2010 4 2 2 Câu 1. ( 2,0 ñi m). Cho hàm s y = x + 2m x + 1 (1). 1. Kh o sát s bi n thiên và v ñ th hàm s khi m = 1. 2. Ch ng minh r ng ñư ng th ng y = x + 1 luôn c t ñ th hàm s (1) t i hai ñi m phân bi t v i m i giá tr c a m. Câu 2. ( 2,0 ñi m) π 1. Gi i phương trình: 2sin2(x - ) = 2sin2x - tanx. 4 2. Gi i phương trình: 2 log3 (x – 4) + 3 log 3 ( x + 2) 2 - log3 (x – 2)2 = 4. 2 Câu 3. ( 2,0 ñi m) π 3 sin x 1. Tính tích phân: I= ∫ cos x 0 3 + sin 2 x dx . 2. Trong không gian, cho tam giác vuông cân ABC có c nh huy n AB = 2a. Trên ñư ng th ng d ñi qua A và vuông góc m t ph ng (ABC) l y ñi m S sao cho mp( SBC) t o v i mp(ABC) m t góc b ng 600. Tính di n tích m t c u ngo i ti p t di n SABC. Câu 4. ( 2,0 ñi m)  3  x + 4 y = y + 16 x 3 1. Gi i h phương trình:  . 1 + y 2 = 5(1 + x 2 )  2. Tìm giá tr nh nh t c a hàm s : x 4 − 4 x 3 + 8x 2 − 8x + 5 f(x) = x 2 − 2x + 2 Câu 5. ( 2,0 ñi m) 1. Trong không gian v i h t a ñ Oxyz, cho ñi m A(0;1;3) và ñư ng th ng x = 1 − t  d:  y = 2 + 2t z = 3  Hãy t m trên ñư ng th ng d các ñi m B và C sao cho tam giác ABC ñ u. 2. Trong m t ph ng Oxy cho elíp (E) có tiêu ñi m th nh t là ( - 3 ; 0) và ñi qua ñi m 4 33 M ( 1; ). Hãy xác ñ nh t a ñ các ñ nh c a (E). 5 ------------------------------------------------ H t---------------------------------------------- D ki n thi th l n sau vào các ngày 17,18 tháng 4 năm 2010. ==============================================
  10. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 10 ============================================= HƯ NG D N GI I BÀI THI L N 3 Câu 1. 1. T làm. 2. Xét phương trình hoành ñ giao ñi m: x4 +2m2x2 +1 = x + 1 ⇔ x4 + 2m2x2 – x = 0 ⇔ x = 0  x( x3 + 2m2x – 1) = 0 ⇔  3 3 2  ð t g(x) = x + 2m x – 1 ;  x + 2m x − 1 = 0(*) 2 2 2 Ta có: g’(x) = 3x + 2m ≥ 0 (v i m i x và m i m ) ⇒ Hàm s g(x) luôn ñ ng bi n v i m i giá tr c a m. M t khác g(0) = -1 ≠ 0. Do ñó phương trình (*) có nghi m duy nh t khác 0. V y ñư ng th ng y = x+ 1 luôn c t ñ th hàm s (1) t i hai ñi m phân bi t v i m i giá tr c a m. Câu 2. π 1. Gi i phương trình: 2 sin2 ( x - ) = 2sin2x – tanx (1) 4 π ði u ki n: cosx ≠ 0 ⇔ x ≠ + k .π (*). 2 π sin 2 x = 1 (1) ⇔ 1 – cos (2x - ) = 2sin2x – tan x ⇔ 1 – sin2x = tanx ( sin 2x – 1) ⇔  2  tan x = −1  π  π 2 x = 2 + k .2π  x = 4 + k .π π π ⇔ ⇔  ⇔ x = + k . . ( Th a mãn ñi u ki n (*) ).  x = − π + l.π  x = − π + l.π 4 2   4   4 2. Gi i phương trình: 2log3 (x2 – 4) + 3 log 3 ( x + 2) 2 - log3 ( x -2)2 = 4 (2).  2 x − 4 > 0  2 x − 4 > 0 x > 2 ði u ki n:  ⇔  ⇔  x ≤ −3 (**) log 3 ( x + 2) 2 ≥ 0  ( x + 2) 2 ≥ 1   Pt (2) ñư c bi n ñ i thành: log3 (x2 – 4)2 – log3 (x – 2)2 + 3 log 3 ( x + 2) 2 - 4 = 0 ⇔ log3 ( x + 2)2 + 3 log 3 ( x + 2) 2 - 4 = 0 ⇔ ( log 3 ( x + 2) 2 + 4) ( log 3 ( x + 2) 2 - 1) = 0. ⇔ log 3 ( x + 2) 2 = 1 ⇔ (x+2)2 = 3 ⇔ x+ 2 = ± 3 ⇔ x = - 2 ± 3 . Ki m tra ñi u ki n (**) ch có x = - 2 - 3 th a mãn. V y phương trình có nghi m duy nh t là : x = - 2 - 3 . Chú ý: 1/ Bi n ñ i : 2log3 ( x2 – 4) = log3 (x2 – 4)2 làm m r ng t p xác ñ nh nên xu t hi n nghi m ngo i lai x = -2 + 3 . 2/ N u bi n ñ i: log3( x – 2)2 = 2log3 ( x – 2) ho c log3( x+2)2 = 2log3(x+2) s làm thu h p t p xác ñ nh d n ñ n m t nghi m ( L i ph bi n c a h c sinh!) Câu 3. π 3 sin x 1. Tính tích phân: I = ∫ cos x 0 3 + sin 2 x .dx sin x cos x ð tt= 3 + sin 2 x = 4 − cos 2 x . Ta có: cos2x = 4 – t2 và dt = dx . 3 + sin 2 x π 15 ð i c n: V i: x = 0 thì t = 3; x = thì t = 3 2 ==============================================
  11. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 11 ============================================= π π 15 15 3 3 2 2 sin x sin x. cos x dt 1 1 1 I= ∫ cos x 0 3 + sin 2 x .dx = ∫ cos 0 2 x 3 + sin 2 x dx = ∫ 4−t 2 = 4 ∫ ( − t+2 t−2 )dt = 3 3 15 1 t+2 1 15 + 4 3+2 1 = ln 2 = (ln − ln ) = (ln( 15 + 4) − ln( 3 + 2)) . 4 t−2 3 4 15 − 4 3−2 2 2. Ta có SA ⊥ mp(ABC) ⇒ SA ⊥ AB ; SA ⊥ AC.. Tam giác ABC vuông cân c nh huy n AB ⇒ BC ⊥ AC ⇒ BC ⊥ SC ( ð nh lý 3 ñư ng vuông góc) . Hai ñi m A,C cùng nhìn ño n SB dư i góc vuông nên m t c u ñư ng kính SB ñi qua A,C. V y m t c u ngo i ti p t di n SABC cũng chính là m t c u ñư ng kính SB. Ta có CA = CB = AB sin 450 = a 2 ; ∠SCA = 600 là góc gi a m t (SBC) và mp(ABC) SA = AC.tan600 = a 6 .T ñó SB 2 = SA2 + AB2 = 10a2. V y di n tích m t c u ngo i ti p t di n SABC là: S = πd 2 = π .SB2 = 10 π a2. Câu 4.  3  x + 4 y = y + 16 x.....(1) 3 1. Gi i h :  1 + y 2 = 5(1 + x 2 )........(2)  T (2) suy ra y2 – 5x2 = 4 (3). Th vào (1) ñư c: x3 + (y2 – 5x2).y = y3 + 16x ⇔ ⇔ x3 – 5x2y – 16 x = 0 ⇔ x = 0 ho c x2 – 5xy – 16 = 0. TH1: x= 0 ⇒ y2 = 4 ( Th vào (3)). ⇔ y = ± 2. 2 x 2 − 16 x 2 − 16 2 TH2: x – 5xy – 16 = 0 ⇔ y = ( 4). Th vào (3) ñư c: ( ) − 5x 2 = 4 ⇔ 5x 5x ⇔ x4 – 32x2 + 256 – 125x4 = 100x2 ⇔ 124 x4 +132x2 – 256 = 0 ⇔ x2 = 1 ⇔ x = ± 1. Th vào (4) ñư c giá tr tương ng y = ∓ 3 . V y h có 4 nghi m: (x;y) = (0;2) ; (0;-2); (1;-3); (-1; 3). Chú ý: N u thay giá tr c a x vào (3) trư ng h p 2, s th a 2 c p nghi m! x 4 − 4 x 3 + 8x 2 − 8x + 5 2. Tìm GTNN c a hàm s : f(x) = . x 2 − 2x + 2 T p xác ñ nh: R vì x2 – 2x + 2 = (x – 1)2 + 1 > 0 v i m i x. 1 Bi n ñ i ñư c: f(x) = x2 – 2x + 2 + 2 ≥ 2 ( B t ñ ng th c Cosi cho hai s dương). x − 2x + 2 D u b ng x y ra khi : x2 – 2x + 2 =1 ⇔ x = 1. V y: min f(x) = 2 ñ t ñư c khi x = 1. Câu 5. 1. Tìm các ñi m B,C? G i H là hình chi u vuông góc c a A trên d. H ∈ d ⇔ H ( 1-t; 2+2t;3) ⇔ AH = ( 1-t; 1+2t; 0). Mà AH ⊥ d nên AH ⊥ ud ( -1;2;0). T ñó có -1(1-t)+2(1+2t) =0 ⇔ t = -1/5 ⇔ H ( 6/5; 8/5; 3). 3 5 2 AH 2 15 15 Ta có AH = .mà tam giác ABC ñ u nên BC = = hay BH = . 5 3 5 5 1 2 15 −1 ± 3 G i: B ( 1-s;2+2s;3) thì (− − S ) 2 + ( + 2 S ) 2 = ⇔ 25s2 +10s – 2 = 0 ⇔ s = 5 5 25 5 6∓ 3 8±2 3 6± 3 8∓ 2 3 V y: B ( ; ;3) và C( ; ;3 ) ( Hai c p). 5 5 5 5 2. Xác ñ nh t a ñ các ñ nh c a (E)? ==============================================
  12. THI TH TRƯ NG CHUYÊN ðHSP HÀ N I 2009 - 2010 12 ============================================= Theo bài ra có F1 ( - 3 ; 0) và F2 ( 3 ;0) là hai tiêu ñi m c a (E). Theo ñ nh nghĩa c a (E) 4 33 2 4 33 2 suy ra : 2a = MF1 + MF2 = (1 + 3 ) 2 + ( ) + (1 − 3 ) 2 + ( ) = 10 ⇒ a = 5. 5 5 L i có c = 3 và a2 – b2 = c2 ⇒ b2 = a2 – c2 = 22. V y t a ñ các ñ nh c a (E) là: A1( - 5;0) ; A2( 5;0) ; B1( 0; - 22 ) ; B2 ( 0; 22 ). --------------------------------------------------H t------------------------------------------------------------ ==============================================
  13.   TRƯ NG ĐHSP HÀ N I Đ THI TH Đ I H C 2009 - 2010 Môn thi: Toán  Đ thi : 4 Th i gian làm bài: 180 phút  Câu I. (2 đi m) Cho hàm s : y = 2x3 − 3(2m + 1)x2 + 6m(m + 1)x + 1, trong đó m là tham s . 1. Kh o sát s bi n thiên và v đ th c a hàm s khi m = 0. 2. Ch ng minh r ng v i m i giá tr c a m, hàm s luôn có c c đ i, c c ti u và kho ng cách gi a các đi m c c đ i, c c ti u c a đ th hàm s không đ i. Câu II. (2 đi m) x √  2 + 6y = − x − 2y  1. Gi i h : y (V i x, y ∈ R).  √  x + x − 2y = x + 3y − 2 (1 + cos 2x)2 2. Gi i phương trình: sin 2x + = 2 cos 2x. 2 sin 2x Câu III. (2 đi m) π x cos x 2 1.Tính tích phân: I = dx. π 4 sin3 x 2. Cho hình chóp S.ABC có đáy ABC là tam giác đ u c nh b ng a, m t bên (SBC) vuông góc v i m t đáy, hai m t bên còn l i t o v i m t đáy m t góc α. Tính th tích hình chóp S.ABC. Câu IV. (2 đi m) 1. Tìm nghi m ph c c a phương trình: 2(1 + i)z 2 − 4(2 − i)z − 5 − 3i = 0. x2 − xy y 2 − yz z 2 − zx 2. Cho các s th c dương x, y, z. Ch ng minh r ng: + + ≥0 x+y y+z z+x Câu V. (2 đi m) 1. Trong m t ph ng Oxy, hãy xác đ nh t a đ các đ nh c a tam giác ABC vuông cân t i A. Bi t r ng c nh huy n n m trên đư ng th ng d : x + 7y − 31 = 0, đi m N (7; 7) thu c đư ng th ng AC, đi m M (2; −3) thu c AB và n m ngoài đo n AB.   x = t     2. Trong không gian Oxyz, cho đư ng th ng ∆ : y = −7 + 2t . G i ∆ là giao     z = 4  tuy n c a hai m t ph ng (P ) : x − 3y + z = 0, (Q) : x + y − z + 4 = 0. Ch ng minh r ng hai đư ng th ng ∆ và ∆ chéo nhau. Vi t phương trình (d ng tham s ) đư ng vuông góc chung c a hai đư ng th ng ∆, ∆ .
  14. HƯỚNG DẪN GIẢI ĐỀ THI THỬ ĐẠI HỌC 2010 DHSP HÀ NỘI LẦN IV Câu 1. 1. Tự làm. 2. Ta có y’ = 6x2 – 6(2m+1)x + 6m(m+1) Þ y’ = 0 khi x1 =m hoặc x2 = m+1. Do x1 ¹ x2 với mọi m nên hàm số luôn có cực đại, cực tiểu. Gọi A(x1;y1), B(x2;y2) là các điểm cực trị thì y1 = f(x1)= 2m3 +3m2 + 1; y2 = f(x2) = 2m3 + 3m2 Þ AB = 2 không đổi (đpcm!). Câu 2.1. Giải hệ: Điều kiện: y ¹ 0; x – 2y ³ 0; x + x - 2 y ³ 0 . x x - 2y x - 2y Pt Û - 2 - x - 2y - 6y = 0 Û - - 6 = 0 ( chia cả hai vế cho y) y y2 y x - 2y x - 2y Û = 3 hoặc = - 2. y y x - 2y ìy > 0 24 4 Với =3 Û í thay vào pt(2) ta được nghiệm x = ,y = îx = 9 y + 2 y 2 y 9 9 x - 2y ìy < 0 Với = -2 Û í thay vào pt(2) ta được nghiệm: x =12, y = - 2. y î x = 4y2 + 2y 8 4 Vậy hệ có hai nghiệm(x;y) = (12;-2),( ; ). 3 9 2. Giải phương trình lượng giác: Điều kiện: sin2x ¹ 0. Pt Û sin2x + 4 cos 4 x cos 3 x = 2(1 - 2 sin 2 x) Û 5 sin 2 x + -2=0 4 sin x cos x sin x cos 3 x 1 Û5+ 3 - 2. 2 = 0 Û cot3x – 2cot2x + 3 = 0 Û (cotx + 1)(cot2x – 3cot x + 3) sin x sin x =0 p Û cotx = -1 ( Vì cot2x – cotx + 3> 0) Û x = - + k .p , k Î Z (thỏa mãn điều kiện). 4 p Vậy phương trình có nghiệm: x = - + k .p , k Î Z . 4 ' æ 1 ö 2 cos x Câu 3.1.Tính tích phân: Ta có ç 2 ÷ = - nên è sin x ø sin 3 x p p 1 2 1 1 1 p 1 2 dx 1 p p 1 p 1 I = - ò xd ( 2 ) = - x. 2 |p 2 + ò 2 = - ( - ) - cot x |p 2 = . 2p sin x 2 sin x 4 2 p sin x 2 2 2 2 4 2 4 4 2. Tính thể tích khối chóp: Hạ SH ^ BC Þ SH ^ (ABC) ( vì: (SBC) ^ (ABC) ). Hạ HM ^ AB, HN ^ AC thì Ð SMH = Ð SNH = a Þ D SHM = D SHN Þ HM = HN h a 3 Þ H là trung điểm của BC ( vì tam giác ABC đều) Þ HM = = 2 4 1
  15. a 3 1 Þ SH = HM.tan a = tan a . Vậy thể tích khối chóp là: VS.ABC = .SH.SABC = 4 3 a 3 tan a . 16 Câu 4. 1.Tìm nghiệm phức: Ta có D ’ = 4(2 – i)2 + 2(1 + i)(5 + 3i) = 16. Vậy phương trình cho hai nghiệm là: 2(2 - i ) + 4 4 - i (4 - i)(1 - i ) 3 5 Z1 = = = = - i 2(1 + i) 1+ i 2 2 2 2( 2 - i ) - 4 - i (-i)(1 - i) 1 1 Z2 = = = =- - i 2(1 + i) 1+ i 2 2 2 2.Chứng minh BĐT: x 2 - xy x( x + y ) - 2 xy 2 xy ( x + y) 2 x+ y x- y Ta có: = = x- ³ x- = x- = (1)( vì x+ y x+ y x+ y 2( x + y ) 2 2 x,y>0) y 2 - yz y - z z 2 - zx z - x Tương tự: ³ (2), ³ (3). Cộng từng vế (1),(2),(3) suy ra: y+z 2 z+x 2 x 2 - xy y 2 - yz z 2 - zx x - y y - z z - x + + ³ + + = 0 .Đẳng thức xảy ra khi x = y = z x+ y y+z z+x 2 2 2 (đpcm!). Câu 5. 1. Xác định tọa độ các đỉnh: Đường thẳng AB đi qua M(2;-3) nên có phương trình: a(x – 2) + b(y + 3) = 0, ( a2 + b2 ¹ 0). 1 a + 7b Do tam giác ABC vuông cân tại A nên: = cos 45 0 = 2 50 . a 2 + b 2 é3a = 4b Û 12a2 -7ab -12b2 = 0 Û ê . ë4a = -3b Với: 3a = 4b,Chọn a = 4, b = 3 ta được d1: 4x + 3y + 1 = 0. Với: 4a = - 3b, chọn a =3, b = - 4 ta được d2: 3x – 4y – 18 = 0. +)Nếu lấy AB là d1: 4x + 3y + 1 = 0 thì AC// d2 nên AC là:3(x -7) –4(y –7) = 0 Û 3x – 4y+7 = 0. ì4 x + 3 y + 1 = 0 Hệ phương trình tọa độ A: í Û A(-1;1) î3 x - 4 y + 7 = 0 ì4 x + 3 y + 1 = 0 Hệ phương trình tọa độ B: í Û B( -4;5). î x + 7 y - 31 = 0 Ta có: MA = (-3;4), MB = (-6;8) Þ MB = 2 MA Þ M nằm ngoài đoạn AB ( Thỏa mãn) ì3 x - 4 y + 7 = 0 Hệ phương trình tọa độ C: í Û C(3;4). î x + 7 y - 31 = 0 +) Nếu lấy AB là d2 sẽ không thỏa mãn. Vậy A(-1;1), B(-4;5) và C(3;4). 2
  16. 2. a). Đường thẳng D đi qua M(0;-7;4) và có VTCP u1 = (1;2;0). - 31 1...1 1 - 3 Đường thẳng D ’ đi qua N(0;2;6) có VTCP u 2 = ( ; ; ) = (2;2;4) 1 - 1 - 11 1....1 Ta có [ u1 ,u 2 ] = (8;-4;-2) và MN = (0;9;2) Þ [ u1 ,u 2 ]. MN = 0 – 36 – 4 = - 40 ¹ 0. Vậy D , D ’ chéo nhau. b). Đường vuông góc chung d của D , D ’ có VTCP: u =(4;-2;-1) ( = ½.[ u1 ,u 2 ]). Gọi HK là đoạn đường vuông góc chung của D , D ’ với H Î D, K Î D ’. Ta có: H=( t; -7+2t;4), K(s;2+s;6+2s) Þ HK ( s – t; 9 + s – 2t; 2 + 2s) cũng là VTCP của d. s - t 9 + s - 2t 2 + 2 s 11 23 23 3 Suy ra : = = Þ s= - ,t= Þ H( ;- ;4) 4 -2 -1 21 7 7 7 ì 23 ï x = 7 + 4t ï ï 3 Vậy phương trình tham số đường vuông góc chung là: í y = - - 2t . ï 7 ïz = 4 - t ï î 3
nguon tai.lieu . vn