Xem mẫu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN QUANG LỊCH NGHIÊN CỨU CHẾ TẠO ỐNG NANO CACBON BẰNG PHƯƠNG PHÁP CVD ỨNG DỤNG LÀM CẢM BIẾN KHÍ NH3 Chuyên ngành : VẬT LIỆU ĐIỆN TỬ Mã số: 62440123 TÓM TẮT LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Công trình được hoàn thành tại: Bộ môn Vật lý Tin học Viện Vật lý Kỹ thuật, Trường Đại học Bách khoa Hà N HÀ NỘI - 2016 Công trình được hoàn thành tại: Trường Đại học Bách khoa Hà Nội Người hướng dẫn khoa học: PGS. TS NGUYỄN HỮU LÂM Phản biện 1: Phản biện 2: Phản biện 3: Luận án đã được bảo vệ trước Hội đồng chấm luận án tiến sĩ cấp Trường họp tại Trường Đại học Bách khoa Hà Nội Vào hồi ….. giờ …. ngày …. tháng ….. năm ….. Có thể tìm hiểu luận án tại thư viện: 1. Thư viện Tạ Quang Bửu – Trường ĐHBK Hà Nội 2. Thư viện Quốc gia Việt Nam MỞ ĐẦU 1. Lý do chọn đề tài Vật liệu nanô (nano materials) là một trong những lĩnh vực nghiên cứu sôi động trong thời gian gần đây. Vật liệu nanô nằm giữa tính chất lượng tử của nguyên tử và tính chất khối của vật liệu. Trong thế giới nanô, ống nanô các bon (CNT) là một trong những vật liệu đặc biệt. Việc ứng dụng vật liệu các bon nanô vào đời sống đã cho ra đời nhiều sản phẩm, nhiều ứng dụng trong những lĩnh vực khác nhau, ví dụ: dùng làm vật liệu lưu trữ khí, vật liệu dẫn nhiệt, vật liệu điện tử... hoặc trong lĩnh vực hấp phụ, nhạy các khí độc hại trong môi trường (như NH3, NO2, CO…). Trong những năm gần đây, những nghiên cứu trong lĩnh vực cảm biến phát hiện phân tử khí đã thu hút được nhiều sự quan tâm của các nhà nghiên cứu trong và ngoài nước. Mục tiêu cuối cùng của các nhà nghiên cứu cảm biến khí là tạo ra một thiết bị có thể phát hiện từng loại khí có trong môi trường với giới hạn nồng độ phát hiện thấp, độ nhạy cao, có tính chọn lọc và độ lặp lại cao làm việc ở nhiệt độ phòng. Hiện nay, môi trường sống ngày càng ô nhiễm với sự xuất hiện của nhiều loại khí độc hại hoặc dễ gây cháy nổ như: khí ga hóa lỏng (LPG), CO2, NH3, NO2, H2, …trong số này thì khí NH3 là phổ biến. Cảm biến khí nói chung và khí NH3 nói riêng hiện nay được phát triển chủ yếu trên cơ sở các ôxít kim loại có tính bán dẫn (ví dụ: SnO2, ZnO…). Những cảm biến loại này thường có nhiệt độ làm việc cao trong vùng từ 300 C đến 400 oC. Để tiết kiệm năng lượng và tinh giản thiết kế của cảm biến, các nhà nghiên cứu đã tìm kiếm những vật liệu mới có thể thay thế cho vật liệu ôxít kim loại bán dẫn. Ống nano các bon (CNT) là một trong những vật liệu thay thế hấp dẫn nhất. Xuất phát từ việc cần tìm ra vật liệu nhạy khí mới có khả năng thay thế cho vật liệu ô xít kim loại truyền thống, tôi chọn hướng nghiên cứu của luận án là phải nghiên cứu chế tạo cảm biến khí NH3 có khả năng làm việc ở nhiệt độ phòng trên cơ sở CNT và nếu có thể sau này có thể tiến đến chế tạo hoàn thiện thiết bị cảm biến khí. 2. Mục đích, đối tượng và phạm vi nghiên cứu Đối tượng của phạm vi nghiên cứu là: vật liệu CNT và linh kiện điện cực có khả năng nhạy khí ở nhiệt độ phòng. Phạm vi nghiên cứu: tổng hợp vật liệu CNT; thiết kế, chế tạo cảm biến trên cơ sở vật liệu CNT và khảo sát tính nhạy khí NH3 cũng như cấu trúc CNT của cảm biến. Nghiên cứu tăng cường độ đáp ứng và độ hồi đáp của cảm biến khí trên cơ sở CNT bằng phương pháp phủ hạt nanô kim loại. Với mục đích và nhiệm vụ đó, tôi chọn tên đề tài nghiên cứu cho luận án này là: “Nghiên cứu chế tạo ống nanô các bon bằng phương pháp CVD ứng dụng làm cảm biến khí NH3”. 3. Phương pháp nghiên cứu Phương pháp CVD nhiệt để tổng hợp vật liệu; kỹ thuật ủ nhiệt để làm sạch CNT; kỹ thuật tạo màng bằng phương pháp vật lý (phún xạ, e-beam). 4. Ý nghĩa khoa học và thực tiễn Kết quả nghiên cứu ứng dụng vật liệu CNT trong lĩnh vực cảm biến khí hiện ở Việt Nam đã được một số nhóm quan tâm thực hiện. Nổi bật là nhóm nghiên cứu PGS. TS Nguyễn Văn Hiếu tập trung vào việc khảo sát đặc tính nhạy khí của CNT trên cơ sở kết hợp với các vật liệu ô xít kim loại; tiếp theo là nhóm PGS, TS Dương 1 Ngọc Huyền khai thác đặc tính nhạy khí của Polymer dẫn kết hợp với vật liệu CNT thuần. Tuy nhiên, các nhóm nghiên cứu trên đều sử dụng CNT ở dạng thương phẩm có sẵn trên thị trường, chưa có nhóm nghiên cứu nào theo hướng tổng hợp trực tiếp vật liệu CNT lên điện cực cũng như theo hướng tăng cường độ nhạy khí của cảm biến trên cơ sở CNT phủ nanô kim loại. Do vậy tác giả hy vọng những nghiên cứu của mình sớm được áp dụng vào thực tiễn và là cơ sở để cho các nghiên cứu khác tiếp bước nhằm thúc đẩy lĩnh vực cảm biến khí ngày càng phát triển và lớn mạnh. 5. Cấu trúc của Luận án: Nội dung chính của luận án được trình bày như sau: Chương 1 Tổng quan về vật liệu ống nanô các bon; Chương 2 Cảm biến khí NH3 trên cơ sở ống nanô các bon; Chương 3 Nghiên cứu tính chất nhạy khí NH3 của CNT thuần; Chương 4 Tăng cường tính nhạy khí NH3 trên cơ sở màng CNT phủ nanô kim loại. Chương 1 TỔNG QUAN 1.1 Giới thiệu về ống nanô các bon Năm 1991, Sumio Iijima làm việc ở hãng NEC (Nhật) khi quan sát bằng kính hiển vi điện tử truyền qua phân giải cao (HRTEM) trên sản phẩm được hình thành trong quá trình phóng điện hồ quang giữa hai điện cực graphit đã phát hiện ra các tinh thể cực nhỏ, dài bám ở điện cực catốt (Nature 354, 56-58, 1991), đó chính là ống nanô các bon đa vách (MWCNT). Sau đó, đến năm 1993, S. Iijima tiếp tục công bố kết quả tổng hợp ống nanô các bon đơn vách (SWCNT), đó là các ống rỗng có đường kính từ 1÷3 nm và chiều dài cỡ vài µm (Nature 363, 603-605, 1993). Để đơn giản, có thể tưởng tưởng SWCNT được tạo thành từ việc cuộn một lá graphen và dán lại, những cách cuộn khác nhau sẽ thu được các SWCNT có cấu trúc khác nhau như hình 1.5 (Academic Press, Chapter XIX, 1996). Tuy nhiên, thực tế SWCNT thường có hai vùng cấu trúc liên kết khác nhau dẫn đến có tính chất vật lý và hoá học tại hai vùng đó khác nhau. Vùng đầu ống có cấu trúc tương tự như phân tử Fulơren C60 tạo thành từ việc ghép các hình lục giác và ngũ giác với nhau. Mỗi hình lục giác được bao quanh bởi 6 hình ngũ giác và để tạo thành mạng kín thì cấu trúc phải là bội số của 12 hình ngũ giác. Vùng thân ống có cấu trúc hình trụ và được tạo nên từ việc liên kết những hình lục giác tạo thành ống. Cấu trúc của SWCNT có thể khảo sát chi tiết bằng kính hiển vi điện tử truyền qua (TEM) và kính hiển vi quét hiệu ứng hầm (STM). Hình 1.5 Cấu trúc mạng graphit hai chiều cuộn lại thành SWCNT và các cấu trúc CNT. 2 Về mặt toán học, SWCNT được đặc trưng bởi đường kính của ống và góc θ (góc chiral) - góc giữa véctơ cuộn Ch (còn gọi là véctơ chiral – trên hình 1.5 là véctơ OA) và véctơ cơ sở a1 của mạng hai chiều graphit. Véctơ chiral được xác định theo hệ thức: Ch = na1+ ma2. (0 ≤ |n| ≤m). (1.1) Trong đó n, m là các số nguyên và a1, a2 là các véctơ cơ sở của mạng graphen. Có hai mô hình được sử dụng để mô tả cấu trúc MWCNT. Trong mô hình thứ nhất (mô hình Russian doll): MWCNT gồm nhiều ống SWCNT đơn lồng vào nhau. Trong mô hình thứ hai: (mô hình Parchment) MWCNT được mô tả như một graphit cuộn lại. Khoảng cách giữa các lớp MWCNT tương đương lớp khoảng cách các lớp graphit trong cấu trúc than chì, xấp xỉ 3,4 Å. MWCNT có đường kính lớn hơn SWCNT và có độ trơ với hóa chất cao hơn. 1.2 Một số tính chất quan trọng của CNT 1.2.1 Tính chất điện CNT có kích thước nanô và đặc điểm cấu trúc có tính đối xứng cao, các hiệu ứng lượng tử, hiệu ứng quang cũng như các tính chất điện, tính chất từ, tính chất nhiệt... của CNT rất đặc biệt. Đối với các SWCNT, độ dẫn điện phụ thuộc cấu trúc, tức là phụ thuộc (n, m). Bằng lý thuyết người ta chứng minh được: Nếu (n - m) là bội của 3 thì SWCNT là kim loại, nếu (n - m) không là bội của 3 thì SWCNT là bán dẫn (Academic Press, Chapter XIX, 1996) (hình 1.6). Do vậy các ống thuộc loại armchair (m = n) đều có tính chất như kim loại và nếu véctơ cuộn Ch được phân bố ngẫu nhiên thì sẽ có 1/3 tổng số SWCNT là kim loại và 2/3 tổng số SWCNT là bán dẫn. Hình 1.6 Tính chất điện của SWCNT phụ thuộc vào chỉ số (n, m). Sai hỏng ở CNT có thể làm thay đổi tính dẫn điện. Thí dụ một SWCNT, phần đầu có cấu trúc kiểu armchair (m = n), phần sau ống có cấu trúc chiral (m ≠ n). Chỗ tiếp xúc giữa hai đoạn cấu trúc khác nhau này có tính chỉnh lưu như một tiếp xúc p-n của bán dẫn. Có thể xem đó là một điốt hay là một nửa của một tranzito. Tính chất điện của MWCNT phức tạp hơn. Khoảng cách giữa các vách theo chiều xuyên tâm nhỏ nhất là 0,34 nm (bằng khoảng cách giữa các lớp của cấu trúc graphit). Có thể xem điện tử bị nhốt trong các lá graphen của từng ống. Đối với ống to ở phía ngoài sự dẫn điện tương tự như ở lá graphen phẳng vì khi đường kính của ống lớn thì khe năng lượng gần bằng không. Những ống ở bên trong dẫn điện hay 3 ... - tailieumienphi.vn
nguon tai.lieu . vn