Xem mẫu

I Next generation lithium ion batteries for electrical vehicles Next generation lithium ion batteries for electrical vehicles Edited by Chong Rae Park In-Tech intechweb.org Published by In-Teh In-Teh Olajnica 19/2, 32000 Vukovar, Croatia Abstracting and non-profit use of the material is permitted with credit to the source. Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published articles. Publisher assumes no responsibility liability for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained inside. After this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in any publication of which they are an author or editor, and the make other personal use of the work. © 2010 In-teh www.intechweb.org Additional copies can be obtained from: publication@intechweb.org First published April 2010 Printed in India Technical Editor: Zeljko Debeljuh Cover designed by Dino Smrekar Next generation lithium ion batteries for electrical vehicles, Edited by Chong Rae Park p. cm. ISBN 978-953-307-058-2 V Preface During the last twenty years since the first commercialization of lithium ion batteries (LIBs), there has been ever continuing improvements in their performance, such as specific charge/ discharge capacity, cycle stability, and safety, according to the practical demands from various end-uses. As a result LIBs play a key role at present as the heart of mobile electronic appliances, being the representatives of the information era and/or economics. However, it is a situation that newly emerged end-uses of LIBs ranging from cordless heavy duty electrical appliances such as handy drills and mini-robots to electrical vehicles (EVs) and/or hybrid electrical vehicles (HEVs) require much more enhanced performance of LIBs than ever. Particularly, to cope with the global climate change issue, much attention has been being drawn to the realization of EVs and HEVs, which would be eventually possible with the advent of LIBs with both high energy density and high power density. This implies that it is a right time to consider new design concept, based on the fundamental operation principle of LIBs, for the component materials of LIBs, including anode, cathode, and separator. The new design concept can be manifested by a variety of different means, for example either by the modifications on morphology, composition, and surface and/or interface of presently existent component materials or by designing completely new component materials. There have been numerous excellent books on LIBs based on various different viewpoints. But, there is little book available on the state of the art and future of next generation LIBs, particularly eventually for EVs and HEVs. This book is therefore planned to show the readers where we are standing on and where our R&Ds are directing at as much as possible. This does not mean that this book is only for the experts in this field. On the contrary this book is expected to be a good textbook for undergraduates and postgraduates who get interested in this field and hence need general overviews on the LIBs, especially for heavy duty applications including EVs or HEVs. The first three chapters are mainly concerned with the performance improvements through modifications of morphology, composition, and surface and/or interface of the existent component materials, and the second three chapters describe the design of component materials of either new type or new composition, and an example of possible application of high performance LIBs: Chapter 1 encompasses the state of the art and suggest desirable future direction of anodes development for electrical vehicles, which was based on the deeper understanding of the operation principle of LIBs, Chapter 2 is concerned with the improvements in the safety and thermo-chemical stability of cathodes, with additional information on various influential factors on the thermo-chemical stability, and Chapter 3 shows how the ionic conductivity of the olefinic separator can be improved via surface modification by plasma grafting. In consecution, Chapter 4 introduces thin film type LIBs ... - tailieumienphi.vn
nguon tai.lieu . vn