of x

MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC

Đăng ngày | Thể loại: | Lần tải: 0 | Lần xem: 0 | Page: 12 | FileSize: M | File type: PDF
0 lần xem

MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC. Tham khảo tài liệu 'một số bài toán về bất đẳng thức', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả. Giống các thư viện tài liệu khác được bạn đọc chia sẽ hoặc do tìm kiếm lại và chia sẽ lại cho các bạn với mục đích tham khảo , chúng tôi không thu tiền từ bạn đọc ,nếu phát hiện nội dung phi phạm bản quyền hoặc vi phạm pháp luật xin thông báo cho website ,Ngoài tài liệu này, bạn có thể download Tải tài liệu luận văn,bài tập phục vụ tham khảo Có tài liệu tải về lỗi font chữ không hiển thị đúng, có thể máy tính bạn không hỗ trợ font củ, bạn download các font .vntime củ về cài sẽ xem được.

https://tailieumienphi.vn/doc/mot-so-bai-toan-ve-bat-dang-thuc-gcnqtq.html

Nội dung

Tài Liệu Miễn Phí xin giới thiệu đến cộng đồng thư viện MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC.Để giới thiệu thêm cho các Thầy cô, các bạn sinh viên, học viên nguồn thư viện Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ đưa vào cho học tập.Xin mời thành viên đang cần cùng tham khảo ,Thư viện MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC trong thể loại ,Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ được giới thiệu bởi thành viên onthidhcd đến học sinh/sinh viên nhằm mục tiêu nghiên cứu , tài liệu này được giới thiệu vào chủ đề Tài Liệu Phổ Thông,Ôn thi ĐH-CĐ , có tổng cộng 12 page , thuộc file .PDF, cùng mục còn có thi trường chuyên, luyện kỹ năng giải nhanh toán, các nguyên lý trong, định luật, đề toán trường chuyên ,bạn có thể download miễn phí , hãy chia sẽ cho mọi người cùng học tập . Để tải file về, các bạn click chuột nút download bên dưới
Tham khảo tài liệu 'một số bài toán về bất đẳng thức', tài liệu phổ biến, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC Bài 1: Chứng minh rằng với mọi số thực ko âm a, b, c ta có: a b c 3    bc ca ab 2, ngoài ra Giải:, nói thêm Xét những biểu thức sau a b c,còn cho biết thêm S   bc ca ab b c a c a b, nói thêm là A   B   bc ca ab cb ca a b, thêm nữa Ta có A + B = 3, tiếp theo là Mặt khác theo bất đẳng thức Cauchy thì: ab bc ca, kế tiếp là S A   3 bc ca a b ab bc ca S A   3 bc ca a b, bên cạnh đó Cộng theo vế ta có 3, nói thêm A + B +2S ≥3  S≥ (Điều phải chứng minh) 2 Bài 2: Chứng minh rằng với mọi số thực ko âm a, b, c, d ta có: a b c d    2 bc cd d a a b,còn cho biết thêm Giải : Đặt a b c d, thêm nữa S    bc c d d a a b b c a a c d a b, tiếp theo là A    B
  1. MỘT SỐ BÀI TOÁN VỀ BẤT ĐẲNG THỨC Bài 1: Chứng minh rằng với mọi số thực không âm a, b, c ta có: a b c 3    bc ca ab 2 Giải: Xét các biểu thức sau a b c S   bc ca ab b c a c a b A   B   bc ca ab cb ca a b Ta có A + B = 3. Mặt khác theo bất đẳng thức Cauchy thì: ab bc ca S A   3 bc ca a b ab bc ca S A   3 bc ca a b Cộng theo vế ta có 3 A + B +2S ≥3  S≥ (Điều phải chứng minh) 2 Bài 2: Chứng minh rằng với mọi số thực không âm a, b, c, d ta có: a b c d    2 bc cd d a a b Giải : Đặt a b c d S    bc c d d a a b b c a a c d a b A    B    bc cd d a ab bc cd d a ab Theo bất đẳng thức Cauchy thì: 1
  2. ab bc cd d a SB    4 bc cd d a a b ac bd ca d b S A    bc cd d a a b ac ca bd d b     bc d a cd ab 4(a  c) 4(b  d )   4 abcd abcd Cộng theo vế ta có A+B+2S ≥8 mà A+B=4 vậy S≥ 4 (Điều phải chứng minh) Bài 3: Cho x, y, z >0 và xyz = 1, chứng minh rằng: x3 y3 z3 3    (1  y)(1  z ) (1  z )(1  x) (1  x)(1  y) 4 Ta có: x3 1 y 1 z x   3 (1  y)(1  z ) 8 8 4 Tương tự ta có: y3 1 x 1 z y   3 (1  z )(1  x) 8 8 4 z3 1 x 1 y z   3 (1  x)(1  y) 8 8 4 Cộng theo vế rồi rút gọn ta có: x3 y3 z3 3     (1  y )(1  z ) (1  z )(1  x) (1  x)(1  y) 4 x  y  z 3 3 xyz 3   2 2 2 x3 y3 z3 3    vậy (1  y )(1  z ) (1  z )(1  x) (1  x)(1  y) 4 2
  3. Bài 4: Cho a, b, c, d >0 và ab+bc+cd+da = 1, chứng minh rằng: a3 b3 c3 d3 1     bcd cd a abd abc 3 Ta có (a + b + c + d)2 = [(a + c)+(b + d)]2 ≥4(a + c)(b + d) = 4(ab + bc + cd + da) = 4  a + b + c + d ≥ 2 ( a, b, c, d >0) a3 b  c  d a 1 2a     bcd 8 6 12 3 Tương tự ta có b3 a  c  d b 1 2b     cd a 8 6 12 3 c3 a  b  d c 1 2c     abd 8 6 12 3 d3 a  b  c d 1 2d     abc 8 6 12 3 Cộng theo vế các bất đẳng thức ta có: a3 b3 c3 d3 a bcd 1 2 1 1         bc d c d a a bd a bc 3 3 3 3 3 a3 b3 c3 d3 1 vậy     bcd cd a abd abc 3 Bài 5: Cho a, b, c>0, chứng minh rằng: 1 1 1 27    a(a  b) b(b  c) c(a  c) 2(a  b  c) 2 (1) Giải: 1 3 VT(1) ≥ 3 3 abc(a  b)(b  c)(c  a)  3 abc 3 (a  b)(b  c)(c  a) 3
  4. 3 27   a  b  c 2(a  b  c) 2(a  b  c) 2 * 3 3 a  b  c Dấu ‘=’ xảy ra    a=b=c a  b  b  c  c  a Bài 6:Chứng minh rằng với mọi số thực dương a, b, c ta luôn có: 1 1 1 1  3 3  3 3  a3  b3  abc b  c  abc a  c  abc abc Giải  a, b, c >0 ta luôn có (a - b)2(a + b) ≥0  (a - b)(a2 - b2) ≥0  a3+b3-a2b-ab2≥0 3 3 2 2 3 3  a +b ≥ a b+ab  a +b ≥ab(a+b) abc abc c  3   a  b3  abc ab(a  b)  abc a  b  c Tương tự ta có abc abc a   b  c  abc bc(b  c)  abc a  b  c 3 3 abc abc b   a3  c3  abc ac(a  c)  abc a  b  c Cộng theo vế ta có: abc abc abc a b c  3 3  3 3  1 a  b  abc b  c  abc a  c  abc a  b  c 3 3 1 1 1 1   3 3  3 3  a3  b3  abc b  c  abc a  c  abc abc Bài 7: Cho các số thực dương x, y, z dương thoả mãn điều kiện x2+ y2+z2=3. Chứng minh rằng: xy yz zx    3 (1) z x y 4
  5. Giải : Ta có:  x2 y 2 y 2 z 2 z 2 x2   x2 y 2 y 2 z 2   x2 y 2 z 2 x2   y 2 z 2 z 2 x2  2 2  2  2    2  2    2  2    2  2   z x y   z x   z y   x y  x2 y 2 y 2 z 2 z 2 x2  2x  y  z   2  2  2 2 2 2  x 2  y2  z 2 z x y VT(1) bình phương ta được: x2 y 2 y 2 z 2 z 2 x2 z 2 x y   2  2 + 2 x 2  y2  z 2  x 2  y2  z 2 + 2  x  y  z  = 3  x 2  y2  z 2  =VP(1) bình 2 2 2  phương Lấy căn bậc hai hai vế (hai vế đều dương) ta được điều phải chứng minh Bài 8:Cho các số dương x, y, z có tích bằng 1. Chứng minh rằng: xy yz xz  5  5 1 x5  xy  y 5 y  y  z 5 x  xz  z 5 Giải: 2 2 2  x, y, z dương ta luôn có: (x-y) (x+y)(x +xy+y )  0 2 2 3 3 5 5 2 2  (x -y )(x -y )  0  x -y  x y (x+y) xy xy 1 z  5    xy  x 2 y2 x  y 1  xy( x  y) x  y  z x  xy  y 5   Tương tự ta có yz x xz y   zy  z 2 y2  z  y  x  y  z , zx  z 2 x 2  z  x  x  y  z cộng theo vế các bất đẳng thức ta có xy yz xz x yz  5  5  1 x5  xy  y 5 y  y  z 5 x  xz  z 5 x  y  z 5
  6. Bài 9: Cho các số thực dương x1, x2, ..., xn thoả mãn 1 1 1   ...  1 1  x1 1  x2 1  xn Chứng minh rằng: x1.x2..... xn  (n-1)n Giải:Ta có x1 1  1 1  n 1  1   ...   1  x1 1  x1  1  x2 1  xn  n 1 (1  x )(1  x ).....(1  x ) 2 3 n x2 1  1 1  n 1  1   ...   1  x2 1  x2  1  x1 1  xn  n 1 (1  x )(1  x ).....(1  x ) 1 3 n .... xn 1  1 1  n 1  1   ...   1  xn 1  xn  1  x1 1  xn 1  n 1 (1  x )(1  x ).....(1  x 1 2 n 1 ) Nhân hai vế của n bất đẳng thức trên ta có:  n  1 n x1.x2 .....xn  1  x1 1  x2  .....1  xn    n 1 n 1 (1  x1 )(1  x2 )(1  x3 ).....(1  xn ) n  x1.x2..... xn  (n-1) Bài 10: Cho các số dương a, b, c, d thoã mãn điều kiện a+b+c+d=4. Chứng minh rằng: a b c d    2 1 b c 1 c d 1 d a 1 a b 2 2 2 2 Giải: Ta có: 6
  7. a ab 2c ab 2c ab c b a.a.c b(a  ac) a  a  a  a  a 1  b2c 1  b2c 2b c 2 2 4 a ba  abc a 1  b2c 4 Tương tự ta có: b bc  bcd c cd  cda b , c , 1  c2d 4 1  c2d 4 d da  dab d 1  d 2a 4 Cộng theo vế 4 bất đẳng thức trên ta có: a b c d     1 b c 1 c d 1 d a 1 a b 2 2 2 2 1 abcd   ab  bc  cd  da  abc  bcd  cda  dab  4 Mặt khác ta có: 42 = (a+b+c+d)2  4(a+c)(b+d) = 4(ab+bc+cd+da) hay ab+bc+cd+da  a+b+c+d Tương tự abc+bcd+cda+dab  a+b+c+d vậy a b c d     1 b c 1 c d 1 d a 1 a b 2 2 2 2 1 abcd  a  b  c  d  2 1 1 = (a  b  c  d )  .4  2 (điều phải chứng minh) 2 2 Bài 11:Cho các số dương a, b, c có tổng bằng 3, chứng minh rằng: a2 b2 c2   1 a  2b b  2c c  2a 2 2 2 Giải: 7
  8.  a 2  b2  c 2  2 2 2 2 a b c    a  2b2 b  2c 2 c  2a 2 a3  b3  c3  2  a 2b2  b 2c 2  c 2 a 2  Do đó ta chỉ cần chứng minh (a2 +b2+c2)2  a3+ b3+ c3+2(a2b2+ c2b2+ a2c2) 4 4 4 3 3 3 a + b + c  a + b + c Thật vậy 3(a3+ b3+ c3) = (a3+ b3+ c3)(a+b+c)  (a2 +b2+c2)2 2 2 2 2  (a +b +c )(1+1+1)  (a+b+c) =9 Do đó a2 +b2+c2  3, suy ra a3+ b3+ c3  a2 +b2+c2 (a4+ b4+ c4)( a2 +b2+c2)  (a3+ b3+ c3)2  a4+ b4+ c4  a3+ b3+ c3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c=1 Bài 12: Giả sử x  y  z  0, chứng minh rằng: x2 y y 2 z z 2 x    x2  y 2  z 2 z x y Giải:Từ giả thiết ta có: x2 y y 2 z z 2 x x2 z y 2 x z 2 y      z x y y z x   xy  yz  zx  x  y  y  z  x  z   0 xyz x2 y y 2 z z 2 x x2 z y 2 x z 2 y       z x y y z x 2  x 2 y y 2 z z 2 x   x 2 y y 2 z z 2 x  x 2 z y 2 x z 2 y              z x y   z x y  y z x  Mặt khác áp dụng bất đẳng thức Cauchy-Schwars ta có:  x 2 y y 2 z z 2 x  x 2 z y 2 x z 2 y    x2  y 2  z 2  2         z x y  y z x  8
  9. 2  x2 y y 2 z z 2 x    x2  y 2  z 2  2      z x y  x2 y y 2 z z 2 x    x 2  y 2  z 2  x, y , z  0  z x y 1 1 1 Bài 13:Giả sử x, y, z  1 và x  y  z  2 , chứng minh rằng: x  y  z  x 1  y 1  z 1 Giải: 1 1 1 x 1 y 1 z 1   2  Ta có: x y z   1 x y z Theo bất đẳng thức Cauchy-Schwars ta có:  x 1 y 1 z 1    2 x+y+z=( x+y+z)  x  y  z   x  1  y  1  z  1    x  y  z  x 1  y 1  z 1 Dấu đẳng thức xảy ra khi và chỉ khi x=y=z=3/2 Bài 14:Chứng minh rằng nếu a, b, c  1 và abc=1 ta luôn có: 1 1 1   1 2a 2b 2c Giải: Bất đẳng thức đã cho tương đương với: 2 2 2 a b c 1 1 1 1    1 2a 2b 2c 2a 2b 2c Luôn tồn tại các số thực dương x, y, z sao cho a = x/y, b = y/z, c = z/x. Khi đó bất đẳng thức trên trở thành: 9
  10. x/ y y/ z z/ x   1 2 x/ y 2 y / z 2 z / x x y z    1 x  2y y  2z z  2x theo bất đẳng thức Cauchy-Schwarz ta có:  x  y  z 2 x y z    1 x  2 y y  2 z z  2 x x( x  2 y )  y ( y  2 z )  z ( z  2 x) Đẳng thức xảy ra khi và chỉ khi x = y = z hay a = b = c= 1 Bài 15:Cho các số thực không âm a, b, c có tổng bằng 1. Chứng minh rằng: a b c   1 3 a  2b 3 b  2c 3 c  2a Giải:Xét các biểu thức: a b c   S= 3 a  2b 3 b  2c 3 c  2a P  a(a  2a)  b(b  2c)  c(c  2a)  (a  b  c) 2  1 Theo bất đẳng thức Holder ta có: S3.P  (a +b +c)4  S3  (a +b +c)2 = 1  S  1 Dấu đẳng thức xảy ra khi và chỉ khi a = b = c = 1/3 Bài 16: Cho a1, a2,..., an dương và có tổng bằng 1, tìm GTNN của biếu a1 a2 an   ...  thức: 1  a 1  a2 1  an 1 Giải: 10
  11. a1 a2 an A   ...  1  a1 1  a2 1  an B = a1(1 - a1) + a2(1 – a2) + ...+ an(1 – an) Theo bất đẳng thức Holder ta có : A2B  (a1 + a2 + ... + an)3 = 1  a1  a 2  ...  a n   n  1 2 Dễ thấy B =1-(a12+ a22+...+ an2)≤ 1-  n n n 1 1 do đó A  n Đẳng thức xáy ra khi ai = n i  1, n Bài 17: Cho x, y, z là các số thực dương thoả mãn xy + yz + zx = 1. 1 1 1 1 Chứng minh :    2 x y yz zx 2 Giả sử x = max(x, y, z) và đặt a = y + z > 0 ta có ax = 1 – yz  1 1  x a Xét hàm số sau 1 1 1 1 2x  y  z  2 x2  1 f  x      x y yz zx yz x2  1 1 2 x  a  2 x2  1   a x2  1 Mặt khác: yz  x 2  x x 2  1 f  x   0, nên f  x  nghịch biến ' 2 3   x  1 2 x  a  2 x  1 2  1 1 a Ta có f  x  f    a   2 a a a 1 11
  12.     2 a 1   a 1  1 2 1 2   a    2 a  a 2  1  2  a 2  1  2   1 1 Nên f  x  f    2  a 2 Dấu đẳng thức xảy ra khi và chỉ khi x = y =1, z = 0 hoặc các hoán vị 12
134942

Sponsor Documents


Tài liệu liên quan


Xem thêm