Xem mẫu

  1. GV: Nguy n T t Thu ( 0918927276) http://www.toanthpt.net E LÍP 1)ð nh nghĩa : T p h p các ñi m M c a m t ph ng sao cho MF1 + MF2 = 2a (2a không ñ i và a > c > 0 ) là m t ñư ng elíp. * F1,F2: c ñ nh là hai tiêu ñi m và F1F2=2c là tiêu c c a elíp. * MF1, MF2: là các bán kính qua tiêu. x2 y 2 2) Phương trình chính t c c a elíp: 2 + 2 = 1 v i b 2 = a 2 − c 2 . a b 2 2 x y V y ñi m M ( x0 ; y0 ) ∈ ( E ) ⇔ 0 + 0 = 1 và | x0 |≤ a ; | y0 |≤ b . 2 a b2 3) Tính ch t và hình d ng c a elíp: *Tr c ñ i x ng Ox (ch a tr c l n); Oy (ch a tr c bé).Tâm ñ i x ng O. *ð nh: A1 (−a;0), A2 ( a;0 ) , B1 (0; −b) và B2 ( 0; b ) . ð dài tr c l n: 2a và ñ dài tr c bé :2b. *Tiêu ñi m: F1(−c; 0), F2( c; 0). *N i ti p trong hình ch nh t cơ s PQRS có kích thư c 2a và 2b v i b 2 = a 2 − c 2 . y x O c a2 − b2 * Tâm sai: e = =
  2. GV: Nguy n T t Thu ( 0918927276) http://www.toanthpt.net CÁC VÍ D x2 y 2 Ví d 1: Cho (E): + = 1. 9 4 1) Xác ñ nh tiêu ñi m,tiêu c ,ñ dài tr c l n,tr c bé c a (E). 3 2) Vi t phương trình ti p tuy n c a (E) t i M ( ; 3) 2 3) Vi t phương trình ti p tuy n c a (E) vuông góc v i ñư ng th ng 2 x − 3 y + 1 = 0 . 4) Vi t phương trình ti p tuy n c a (E) ñi qua M (3;3) . Gi i: a 2 = 9 1)  2 b = 4 { ⇒ a = 3 , c2 = a 2 − b2 = 5 ⇒ c = 5 b=2 T ñó suy ra: Tr c l n : A1 A2 = 2a = 6 ;Tr c bé: B1B2 = 2b = 4 ; ( ) ( Tiêu ñi m : F1 − 5;0 , F2 ) 5;0 ; Tiêu c : F1 F2 = 2c = 2 5 3 x 3y 2) Ti p tuy n c a (E) t i M ( ; 3) : + = 1 ⇔ 2 x + 3 3 y − 12 = 0 2 6 4 3) Vì ti p tuy n vuông góc v i ñư ng th ng 2 x − 3 y + 1 = 0 nên phương trình có d ng 3x + 2 y + C = 0 . ði u ki n ti p xúc A2 a 2 + B 2b2 = C 2 ⇔ 81 + 16 = C 2 ⇔ C = ± 97 V y ti p tuy n c n tìm có phương trình: 3 x + 2 y ± 97 = 0 . 4) Cách 1: Phương trình ti p tuy n có d ng: A( x − 3) + B ( y − 3) = 0 ⇔ Ax + By − 3 A − 3B = 0 B = 0 ði u ki n ti p xúc: 9 A + 4 B = (3 A + 3B) ⇔ 5 B + 18 AB = 0 ⇔  2 2 2 2 18 . B = − A  5 * B = 0 ⇒ pttt : x − 3 = 0 18 * B = − A , ch n A = 5 ⇒ B = −18 ⇒ pttt : 5 x − 18 y + 39 = 0 . 5 xx yy Cách 2: G i ( x0 ; y0 ) là t a ñ ti p ñi m ⇒ pttt : 0 + 0 = 1 9 4 x 3y 3 Ti p tuy n ñi qua M (3;3) nên 0 + 0 = 1 ⇒ x0 = (4 − 3 y0 ) 3 4 4 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 2
  3. GV: Nguy n T t Thu ( 0918927276) http://www.toanthpt.net 2 2  y0 = 0 ⇒ x0 = 3 x0 y0 M t khác: + = 1 ⇒ (4 − 3 y0 ) + 4 y0 = 16 ⇔  2 2 . 9 4  y0 = 24 ⇒ x0 = − 15  13 13 Thay vào ta cũng ñư c hai phương trình như trên. Nh n xét:* Cách gi i 2 bài 4 giúp chúng ta xác ñ nh ñư c t a ñ ti p ñi m. x2 y2 *(E): 2 + 2 = 1 có hai ti p tuy n th ng ñ ng x = ± a , nh ng ti p tuy n còn l i luôn có h a b s góc. 1 Ví d 2: Bi t Elips (E) có tâm sai e = và tiêu c b ng 8. 2 1) L p phương trình (E). 2) Tìm ñi m M ∈ ( E ) sao cho MF1 = 2 MF2 3) Cho N là m t ñi m b t kì thu c (E). Ch ng minh r ng ON 2 + NF1.NF2 không ph thu c vào N. 4) Tìm trên (E) hai ñi m A,B sao cho A và B ñ i x ng nhau qua Ox, ñ ng th i ∆ABC v i C (2;0) là tam giác ñ u. Gi i: {  1   c 1 x2 y 2 1) Ta có: e = 2 ⇒  a = 2 ⇒ a = 2c = 8 ⇒ b 2 = a 2 − c 2 = 48 ⇒ ( E ) : + = 1. c=4 2c = 8 c = 4   64 48 1 1 2) G i M ( x0 ; y0 ) ∈ ( E ) ⇒ MF1 = 8 + x0 ; MF2 = 8 − x0 2 2 1 16 4 15 ⇒ MF1 = 2 MF2 ⇔ 8 + x0 = 16 − x0 ⇔ x0 = ⇒ y0 = ± 2 3 3 16 4 15 V y M ( ;± ). 3 3 3) Gi s : N ( x0 ; y0 ) ∈ ( E ) ⇒ 3 x0 + 4 y0 = 192 2 2 1 2 ⇒ ON 2 = x0 + y0 ; NF1.NF2 = a 2 − e2 x0 = 64 − x0 2 2 2 4 3 2 1 ⇒ ON 2 + NF1 NF2 = x0 + y0 + 64 = (3 x0 + 4 y0 ) + 64 = 112 không ph thu c vào N. 2 2 2 4 4 4) Vì A, B ñ i x ng nhau qua Ox nên A( x0 ; y0 ), B( x0 ; − y0 ) v i 3 x0 + 4 y0 = 192 (1) và ta có 2 2 th gi s y0 > 0 . Vì ∆ABC cân t i C nên ∆ABC ñ u ⇔ AB = BC ⇔ 3 y0 = ( x0 − 2) 2 thay vào (1) ta ñư c 2 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 3
  4. GV: Nguy n T t Thu ( 0918927276) http://www.toanthpt.net 4 8 ± 12 51 3 x0 + ( x0 − 2)2 = 192 ⇔ 13 x0 − 16 x0 − 560 = 0 ⇔ x0 = 2 2 3 13 8 + 12 51 12 51 − 5 *V i x0 = ⇒ y0 = . 13 13 3 8 − 12 51 12 51 + 5 * V i x0 = ⇒ y0 = . 13 13 3 V y có hai c p ñi m th a mãn yêu c u bài toán. x2 y2 Ví d 3.Cho (E): + = 1.Tìm M thu c (E) nhìn hai tiêu ñi m dư i m t góc 1200 100 25 ( ) ( ) Gi i: Ta có : F1 −5 3;0 , F2 5 3;0 và e = 2 3 F1 F2 2 = MF12 + MF22 − 2 MF1MF2 cos1200 ⇔ 4c 2 = ( MF1 + MF2 ) − MF1MF2 2 ⇔ 4c 2 = 3a 2 + e2 x 2 M ⇔ xM = 0 ⇔ yM = ±5 ⇒ M ( 0; ±5 ) Bài t p 1/ Tìm tiêu ñi m,tiêu c ,ñ dài các tr c,tâm sai và to ñ các ñ nh c a các elip sau a) 4 x 2 + 9 y 2 = 36 b) x 2 + 9 y 2 = 36 2/ Vi t pt chính t c c a (E) bi t :  3   3 a) (E) ñi qua M (1;0 ) , N  ;1 2  ( ) b) F1 − 3,0 và M 1;  ∈ (E) 2    3/Cho (E): 9 x + 25 y = 225 . Tìm M ∈ ( E ) bi t 2 2 a) MF1 = 2MF2 b) MF2 = 2MF1 x2 y2 4/ Cho (E): + = 1 ( a > b > 0 ) và M ∈ ( E ) . Ch ng minh r ng : a2 b2 a) MF1.MF2 + OM 2 = a 2 + b 2 ( b) ( MF1 − MF2 ) = 4 OM 2 − b2 2 ) x2 y2 5/ Cho (E): + = 1 ( a > b > 0) a2 b2 a) Ch ng minh r ng b ≤ OM ≤ a ∀M ∈ ( E ) b) A;B là hai ñi m thu c (E) sao cho OA vuông góc v i BO.Ch ng minh AB luôn ti p xúc v i m t ñư ng tròn c ñ nh c) Tìm giá tr l n nh t ,giá tr nh nh t c a di n tích tam giác OAB. Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 4
  5. GV: Nguy n T t Thu ( 0918927276) http://www.toanthpt.net 6/ Ch ng minh r ng tích các kho ng cách t hai tiêu ñi m c a m t Elíp ñ n m t ti p tuy n tuỳ ý c a nó thì luôn b ng bình phương c a bán tr c bé. x2 y 2 x2 y 2 7/ Vi t phương trình ti p tuy n chung c a hai Elíp: ( E1 ) : + = 1 và ( E2 ) : + =1 16 9 9 16 8/ a) Hãy l p phương trình chính t c c a Elíp (E), bi t nó có hai tiêu ñi m là F1 (− 10;0) F2 ( 10;0) và bán tr c l n a = 18 . b) Xét ñư ng th ng ( d ) ti p xúc v i (E) và c t tr c hoành t i A, c t tr c tung t i B. Hãy xác ñ nh ñư ng th ng ( d ) sao cho tam giác OAB có di n tích l n nh t. 9/ Cho Elíp ( E ) : 4 x 2 + 16 y 2 = 64 a) Hãy xác ñ nh các tiêu ñi m F1 , F2 c a Elíp. b) Gi s M là m t ñi m di ñ ng trên (E). Ch ng minh r ng t s kho ng cách t M ñ n tiêu 8 ñi m ph i F2 và ñ n ñư ng th ng x = là luôn luôn không ñ i. 3 c) Cho ñư ng tròn ( C ) : x 2 + y 2 + 4 3x − 4 = 0 . Xét m t ñư ng tròn ( C ') thay ñ i nhưng luôn ñi qua F2 và ti p xúc ngoài v i ñư ng tròn ( C ) . Hãy tìm qu tích tâm N c a ñư ng tròn ( C ') . x2 y2 10/ Cho Elíp ( E ) : + = 1 . Xét các ñi m A1 ( −a;0 ) ; A2 ( a;0 ) ; M ( − a; m ) ; N ( a; n ) ; ( m; n a2 b2 thay ñ i ). a) Ch ng minh r ng ñư ng th ng MN ti p xúc v i (E) khi và ch khi mn = b 2 b) Gi s M, N thay ñ i nhưng ñư ng th ng MN luôn ti p xúc v i (E). Tìm qu tích giao ñi m I c a hai ñư ng th ng A1 N và A2 M . c) V i gi thi t như câu b) , hãy xác ñ nh to ñ M,N sao cho tam giác F2 MN có di n tích nh nh t. d) Gi s MN ti p xúc v i (E). Ch ng minh r ng ño n th ng MN ñư c nhìn t hai tiêu ñi m c a (E) dư i m t góc vuông. x2 y 2 11/ Trong m t ph ng t a ñ cho Elip: + = 1 và ñ/th ng d m : mx − y − 1 = 0 9 4 a) Ch ng minh r ng d m luôn c t (E) t i hai ñi m phân bi t v i m i m. b) Vi t phương trình ti p tuy n c a (E) xu t phát t N (1; −3) x2 y 2 x2 y 2 12) Vi t phương trình ti p tuy n chung c a hai Elíp: ( E ) : + = 1 và ( E ') : + =1 36 9 9 36 x2 y 2 13) Vi t pt tt chung c a ( E ) : + = 1 và ñư ng tròn ( C ) : x 2 + y 2 = 16 25 16 Trư ng THPT Lê H ng Phong – Biên Hòa – ð ng Nai 5
nguon tai.lieu . vn