Xem mẫu

  1. ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC K Ỹ THUẬT CÔNG NGHIỆP NGUYỄN TIẾN LUẬT NGHIÊN CỨU ỨNG DỤNG BIẾN TẦN ĐA MỨC TRONG TRUYỀN ĐỘNG ĐIỆN Chuyên ngành: TỰ ĐỘNG HOÁ Khoá học: K10 TÓM TẮT LUẬN VĂN THẠC SỸ KỸ THUẬT Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrctnu.edu.vn
  2. Công tr ình được hoàn thành tại: KHOA SAU ĐẠI HỌC - ĐẠI HỌC CÔNG NGHIỆP Người hướng dẫn khoa học: PGS.TS NGUYỄN VĂN LIỄN Phản biện 1: PGS.TS NGUYỄN NHƯ HIỂN Phản biện 2: TS. TRẦN TRỌNG MINH Luận văn được bảo vệ trước Hội đồng chấm luận văn họp tại: TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP Vào hồi 11h ngày 22 tháng 11 năm 2009 Có thể tìm hiểu luận văn tại: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrctnu.edu.vn
  3. Chƣơng I ĐỘNG CƠ KHÔNG ĐỒNG BỘ VÀ PHƢƠNG PHÁP ĐIỀU KHIỂN TẦN SỐ 1.1. Mô tả chung về động cơ không đồng bộ. - Ở đây ta chủ yếu nghiên cứu động cơ không đồng bộ ba pha. - Động cơ không đồng bộ ba pha là máy điện quay không đồng bộ ba pha. về cấu tạo, động cơ không đồng bộ gồm 2 phần chính là phần tĩnh hay là stato và phần quay là rôto. Stato thường gồm 3 cuộn dây đặt lệch nhau 120° trong không gian. Rôto phân làm 2 loại chính: rôto dây quấn và rôto lồng sóc. Rôto dây quấn là kiểu rôto có dây quấn giống ở stato, dây quấn rôto được đặt và các rãnh của lõi sắt rôto. Còn rôto lồng sóc thì không dùng dây quấn mà dùng các thanh dẫn bằng đồng hay nhôm, các thanh dẫn này được nối ngắn mạch với nhau ở mỗi đầu bằng vòng ngắn mạch. c c a b a b Hình 1.1. Động cơ không đồng bộ. a) Rô to lồng sóc, b) Rôto dây quấn - Động cơ không đồng bộ được sử dụng rộng rãi trong thực tế sản xuất. Ưu điểm nổi bật của loại động cơ này là cấu tạo đơn giản đặc biệt là động cơ rôto lồng sóc; so với động cơ một chiều động cơ không đồng bộ có giá thành hạ, vận hành tin cậy , chắc chắn. Ngoài ra động cơ không đồng bộ có thể dùng trực tiếp lưới điện xoay chiều 3 pha nên không cần bộ biến đổi như động cơ điện 1 chiều. Nhược điểm của động cơ không đồng bộ là điểu chỉnh tốc độ và khống chế các quá trình quá độ khó khăn; riêng với động cơ không đồng bộ rôto lồng sóc thì các chỉ tiêu khởi động xấu hơn. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 1
  4. 1.2. Phƣơng trình đặc tính cơ của động cơ không đồng bộ: - Sơ đồ thay thế của động cơ không đồng bộ: Để thành lập phương trình đặc tính cơ của động cơ không đồng bộ ta sử dụng sơ đồ thay thế. Trên hình 1.2 là sơ đồ thay thế gần đúng một pha của động cơ không đồng bộ với các giả thiết sau: + Ba pha động cơ là đối xứng, khe hở không khí là đồng đều. + Các thông số của động cơ không đổi, nghĩa là không phụ thuộc vào nhiệt độ, tần số, dòng điện rôto, mạch từ không bão hoà. Nên điện kháng X1, X2 không đổi. + Dòng điện từ hoá không phụ thuộc vào tải mà chỉ phụ thuộc vào điện áp đặt ở stato động cơ. + Bỏ qua cả tổn thất ma sát, tổi thất trong lõi thép. + Điện áp lưới hoàn toàn sin và đối xứng 3 pha. I2 I1 X1 X'2 R1 Xm I3 R'2/s U1 Rm Hình 1.2. Sơ đồ thay thế động cơ không đồng bộ - Trong sơ đồ: +U1: Trị số hiệu dụng của điện áp pha stato. +Iµ, I1, I2: Các dòng điện từ hoá, stato và rôto đã quy đổi về stato. +Xσ, X1σ, X2σ : Điện kháng mạch từ hoá, điện kháng tản stato và rôto đã quy đổi về stato. 1   + s: Độ trượt của động cơ: S  1 + f1: Tần số của điện áp nguồn đặt vào stato. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 2
  5. +ω: Tốc độ góc của động cơ. +Pp: Số đôi cực từ động cơ. Từ sơ đồ thay thế ta có:       1 1 I1  U f 1.  (1.1)  '2  R  X   R  R2   X 2  2 2 1   s   nm     Trong đó: Xnm=X1σ+X’2σ: Điện kháng ngắn mạch Biểu thức (1) là phương trình đặc tính của dòng điện stato. + Khi ω=0, s=1 thì I1=I1nm U f1 + Khi ω=ω1, s=0 thì: I 1   I R02  X 02 + I1nm: Dòng điện ngắn mạch stato. + I: Dòng điện từ hoá có tác dụng tạo ra từ trường quay từ hoá lõi sắt động cơ. Ta cũng tìm được dòng điện rôto quy đổi về stato: U f1 I2  ' (1.2) R  2 1  R2 / 2  X nm ' 2 - Phương trình đặc tính cơ của động cơ: Để tìm phương trình đặc tính cơ của động cơ ta dựa vào điều kiện cân bằng công suất trong động cơ. Công suất điện từ chuyển từ stato sang rôto: P12=Mdt.ω1 Trong đó: Mdt: là mômen điện từ của động cơ Bỏ qua các tổn thất phụ thì : Mdt=Mcơ =M Công suất đó chia làm hai phần: Pcơ: Công suất cơ đưa ra trên trục động cơ ΔP2: Công suất tổn hao đồng trong rôto. P12=Pcơ+ΔP2 =>M.ω1=M. +ΔP2 Do đó: ΔP2=M(ω1-ω)=M.ω1.s Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 3
  6. Mặt khác: ΔP2=3.I’22.R2’ ' R2 '2 3.I . 2 s M 1 3U12 .R2 ' Từ đó ta có: M  (1.3)   '2 R2  1  R1    X nm .s 2  s      dM 0 Xác định cực trị bằng cách tính ds Từ đó suy ra: ' R2 S th   + (1.4) R12  X nm 2 U 12f M th   + (1.5) 21 ( R1  R12  X nm ) 2 Trong hai biểu thức trên dấu + ứng với trạng thái động cơ. Dấu - ứng với trạng thái máy phát. Do đó Mth ở chế độ máy phát lớn hơn ở chế độ động cơ. Ở đây nghiên cứu hệ truyền động với động cơ không đồng bộ nên ta quan tâm nhiều tới trạng thái làm việc động cơ nên đường đặc tính cơ lúc này thường biểu diễn trong khoảng 0
  7.  Sdm Sth M Mth Mdm Mkd Hình 1.3. Đặc tính cơ động cơ không đồng bộ Từ phương trình đặc tính cơ ta thấy các thông số ảnh hưởng tới đặc tính cơ: Ảnh hưởng điện trở, điện kháng mạch stato - Ảnh hưởng điện trở mạch rôto - Ảnh hưởng điện áp lưới cấp cho động cơ - Ảnh hưởng của tần số lưới cấp cho động cơ f1. - 1.3. Mô hình động cơ không đồng bộ. 1.3.1. Mô hình động cơ không đồng bộ trong không gian ba pha. - Quy ước: A,B, C chỉ thứ tự pha các cuộn dây rôto và a,b,c chỉ thứ tự các cuộn dây stato. Giả thiết: Cuộn dây stato, rôto đối xứng 3 pha. - Dây quấn stato được bố trí sao cho từ thông khe hở có phân bố dạng hình sin dọc - theo chu vi khe hở không khí. Tham số không đổi. - Mạch từ chưa bão hoà. - Khe hở không khí δ đồng đều. - Nguồn 3 pha cấp hình sin và đối xứng (lệch pha góc 2л/3). - Phương trình cân bằng điện áp của mỗi cuôn dây k như sau: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 5
  8. Trong đó: k là thứ tự cuộn dây A, B, C rôto và a,b,c stato. k U k  I k Rk  d dt Ψk là từ thông móc vòng của mỗi cuộn dây thứ k.Ψk=∑Ljkij. nếu i=k: ta có điện cảm tự cảm , j≠k: ta có điện cảm hỗ cảm. Ví dụ: Ψa=La aia+Labib+Lacic+LaAiA+LaBiB+LaCiC L là điện cảm chính của dây quấn pha động cơ không đồng bộ. Lσ là điện cảm tản Ns là số vòng dây quấn stato Nr là số vòng dây quấn rôto Ls Ls s   1 L L Lr .N r2 Lr r   1 LN s2 L   a   b    a   A    c     b     B   A     c   C     B   C  ia  i A  u A  u  i s  ib  u r  u B  ir  i B  , u s  a  ,     ic  u C  iC  u       RS 0  Rr 0 0 0 Rs    0 0 Rr    0 0 RS Rr     0 RS  0 Rr      0 0 Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 6
  9.  1  1 1 1 1   s  2 1   r    2 2 2 1 1 N r2  1 1 Ls   L.  Ls   2 L.  1 s   1 r  2 2 Ns  2 2  1 1  s   1 1 r  1 1   2  2      2 2 cos cos(  2 3) cos(  2 3)   cos(  2 3) cos(  2 3) Lm ( )  M . cos  cos(  2 3) cos(  2 3) cos     s   Ls  Lm ( )  i      x  s Lr    r  Lm ( ) t  r  i   d d Lm ( )  i  u s  R S  LS dt dt u    d t xs d  ir   r  R r  Lr    Lm ( )  dt dt  d {Lm ( )ir } M  ist d Các hệ phương trình trên là các hệ phương trình vi phân phi tuyến có hệ số biến thiên theo thời gian vì góc quay θ phụ thuộc thời gian:    0    t dt Kết luận: nếu mô tả toán học như trên thì rất phức tạp nên cần đơn giản giảm bớt đi. Tới năm 1995 Kôvacs(Liên Xô) đề xuất phép biến đổi tuyến tính không gian vectơ và Park(Mỹ) đưa ra phép biến đổi d,q. 1.3.2. Phép biến đổi tuyến tính không gian vectơ: Trong máy điện ba pha thường dùng cách chuyển các giá trị tức thời của điện áp thành các vectơ không gian. Lấy một mặt phẳng cắt động cơ theo hướng vuông góc với trục và biển diễn từ không gian thành mặt phẳng. Chọn trục thực của mặt phẳng trùng với trục pha a. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 7
  10. Ia +1( is i s +j( is  a ib . 2 a . ic Hình 1.4 Tương quan giữa hệ toạ độ αβ và toạ độ pha a,b,c Ba vectơ dòng điện stato i a, ib, ic tổng hợp lại và đại diện bởi một vectơ quay tròn is. Véctơ không gian của dòng điện stato: 2   2 j ae is  ia  aib  a 2 ic 3 3 Muốn biết is cần biết các hình chiếu của nó lên các trục toạ độ: isα , isβ. is=isα + jisβ isa  Reis   2ia  ib  ic  1 3 i s  Imi s   ib  ic  3 3 Theo cách thức trên có thể chuyển vị từ 6 phương trình (3rôto, 3 stato) thành nghiên cứu 4 phương trình. Phép biến đổi từ 3 pha (a,b,c) thành 2 pha(α,β) được gọi là phép biến đổi thuận. Còn phép biến đổi từ 2 pha thành 3 pha được gọi là phép biến đổi ngược. Đơn gian hơn, khi chiếu is lên một hệ trục xy bất kỳ quay với tốc độ ω k: θk = θ 0 + ω k t + Nếu ωk=0, θ0=0: đó là phép biến đổi với hệ trục (biến đổi tĩnh) + Nếu ωk=ω1, θ0 tự chọn bất kỳ (để đơn giản một phương trình x trùng ψ r để ψry=0): phép biến đổi d,q. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 8
  11. Chuyển sang hệ toạ độ quay bất kỳ: Các hệ toạ độ được mô tả như sau: x Ia  k is 2 a a.ib y Hình 1.5 Hệ toạ độ quay bất kỳ.  d Pha B i s q i s isd r s isq  Pha A is Pha C Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 9
  12. Hình 1.6. Các đại lượng is và r của động cơ trên các hệ toạ độ - Các phương trình chuyển đổi hệ toạ độ: a, b, c -> αβ i sa  ia ia  ib  1 is  3 αβ  d,q Isd=isαcosθ +isβsinθ Isq = isβcosθ +isαsinθ αβ  a,b,c ia = isa   1 ib   i sa  3.i s 2   1 ic   i sa  3.i s 2 D,q → αβ is  isd cos  isq sin  is  isd sin   isq cos - Hệ phương trình cơ bản của động cơ trong không gian vectơ: Để dễ theo dõi ta ký hiệu: Chỉ số trên s: Xét trong hệ toạ độ stato(toạ độ α,β) f: trong toạ độ trường (fied) từ thông rôto(toạ độ dq) r: toạ độ gắn với trục rôto Chỉ số dưới: s: đại lượng mạch stato r: toạ độ gắn với trục rôto. Phương trình mômen: 3 p( r  i ) mM  2 Phương trình chuyển động: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 10
  13. J d mM  mc  p dt Phương trình điện áp cho ba cuộn dây stato:  sa (t ) u sa (t )  Rs i sa (t )  d dt  sb (t ) u sb (t )  Rs i sb (t )  d dt  sc (t ) u sc (t )  Rs i sc (t )  d dt Tương tự như vectơ dòng điện ta có vectơ điện áp:   u s (t )  2 / 3 u sa (t )  u sb (t ).e j120  u c(t ).e 240 Sử dụng khái niệm vectơ tổng ta nhận được phương trình vectơ:  ss u ss  Rs .iss  d dt Khi quan sát ở hệ toạ độ α,β: - Đối với mạch rôto ta cũng có được phương trình như trên, chỉ khác là do cấu tạo các lồng sóc là ngắn mạch nên ur=0(quan sát trên toạ độ gắn với trục rôto) Từ thông stato và rôto được tính như sau:  rr 0  Rr irr  d dt  s  i s L s  i r Lm  r  i s Lm  i r Lr Trong đó Ls: điện cảm stato Ls=LσS +Lm(LσS: Điện cảm tiêu tán phía stato) Lr: điện cảm rôto Lr=Lαr+Lm(Lσr: Điện cảm tiêu tán phía rôto) (Phương trình từ thông không cần đến chỉ số hệ toạ độ vì các cuộn dây stato và rôto có cấu tạo đối xứng nên điện cảm không đổi trong mọi hệ toạ độ). 1.4. Điều khiển tần số động cơ không đồng bộ: 1.4.1.Các phƣơng pháp điểu khiển tốc độ động cơ không đồng bộ: Từ phương trình đặc tính cơ của động cơ: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 11
  14. ' R2 3U 12 s M   '2 R2  1  R1    X nm  2  s      Ta có thể dựa vào đó để điểu khiển mômen bằng cách thay đổi các thông số như điện áp cung cấp, điện trở phụ, tốc độ trượt và tần số nguồn. Tới nay đã có các phương pháp điều khiển chủ yếu sau: Tổn thất Kinh tế Điều chỉnh Điều chỉnh ~ = tần số điện áp nguồn cấp stato Stato Stato = ~ Điều Điều chỉnh chỉnh công suất bằng pp trượt xung điện Rô to trở rôto P 8 Pn Pn K NL CL Hình 1.7. Các phương pháp điều khiển a. Điều khiển điện áp stato: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 12
  15. Do mômen động cơ không đồng bộ tỉ lệ với bình phương điện áp stato, do đó có thể điều chỉnh được mômen và tốc độ không đồng bộ bằng cách điều chỉnh điện áp stato trong khi giữ nguyên tần số. Đây là phương pháp đơn giản nhất, chỉ sử dụng một bộ biến đổi điện năng(biến áp, tiristor) để điều chỉnh điện áp đặt vào các cuộn stato. Phương pháp này kinh tế nhưng họ đặc tính cơ thu được không tốt, thích hợp với phụ tải máy bơm, quạt gió. b. Điều khiển điện trở rôto: Sử dụng trong cơ cấu dịch chuyển cầu trục, quạt gió, bơm nước: bằng việc điểu khiển tiếp điểm hoặc tiristor làm ngắn mạch/hở mạch điện trở phụ của rôto ta điều khiển được tốc độ động cơ, phương pháp này có ưu điểm mạch điện an toàn, giá thành rẻ. Nhược điểm: đặc tính điểu chỉnh không tốt, hiệu suất thấp, vùng điều chỉnh không rộng. c. Điều chỉnh công suất trượt: Trong các trường hợp điều chỉnh tốc độ động cơ không đồng bộ bằng cách làm mềm đặc tính và để nguyên tốc độ không tải lý tưởng thì công suất trượt ΔP s=sPdt được tiêu tán trên điện trở mạch rôto, ở các hệ thống truyền động điện công suất lớn, tổn hao này là đáng kể, vì thế để vừa điều chỉnh được tốc độ truyền động, vừa tận dụng được công suất trượt người ta sử dụng các sơ đồ công suất trượt(sơ đồ nối tầng/nối cấp). P1=Pcơ+Ps=P1(1-s)+sP1=const. Nếu lấy Ps trả lại lưới thì tiết kiệm được năng lượng. - Khi điều chỉnh với ωω1 (s
  16. 2f   1 (1  s) Xuất phát từ công thức: 1  ; P Trong đó: ω1 tốc độ đồng bộ f tần số nguồn p số đôi cực s hệ số trượt  f > f dm f = f dm f < f dm M Hình 1.8. Đặc tính cơ động cơ không đồng bộ khi điều chỉnh tần số. Với một động cơ khi đã chế tạo thì số đôi cực (Pp) cố định do đó khi thay đổi tần số f thì dẫn đến tốc độ thay đổi và sẽ dẫn đến tốc độ động cơ thay đổi. Khi điều chỉnh tần số động cơ không đồng bộ thường phải điều chỉnh cả điện áp, dòng điện hoặc từ thông trong mạch stato do trở kháng, từ thông, dòng điện…của động cơ bị thay đổi. - Khi điều chỉnh tần số, giả sử điện áp là điện áp định mức(Udm): + Nếu giảm tần số f < fđm(trong khi giữ U=Udm) thì từ thông ψ tăng lên, dẫn đến dòng từ hóa tăng lên, lúc này lõi thép bị bão hoà làm cho máy nóng làm việc sẽ kém đi, dẫn đến hiệu suất thấp, nóng mạch từ. Vì vậy, để đảm bảo một chỉ tiêu mà không làm động cơ bị quá dòng, cần phải điều chỉnh cả điện áp động cơ, cụ thể là giảm điện áp cùng với việc giảm tần số theo quy luật nhất định. + Nếu tăng tần số vì điện áp U1=Udm(điện áp định mức là lớn nhất). Lúc này từ thông θ động cơ sẽ giảm xuống làm cho momen động cơ giảm, dẫn đến tốc độ động cơ giảm rất nhiều. Trường hợp mômen động cơ yếu có thể làm cho động cơ không quay được. Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 14
  17. Khi tần số tăng (f > fdm )thì mômen tới hạn giảm. 1 M th  f12 - Điều chỉnh tần số động cơ không đồng bộ là phương pháp điều chỉnh kinh tế, tuy vậy nó đòi hỏi kỹ thuật cao và phức tạp. Điều này xuất phát từ bản chất và nguyên lý làm việc của động cơ là phần cảm và phần ứng không tách biệt. có hai hướ ng tiếp cận là: + Hướng thứ nhất coi stato là phần cảm tạo ra từ thông ψ s, còn mômen là do tác động của từ thông ψs và dòng điện ir. + Hướng thứ hai coi rôto là phần cảm tạo ra từ thông ψ r còn mômen là do tác động của ψr và dòng điện stato is. Lịch sử điều khiển tần số động cơ không đồng bộ xuất phát từ thông số ψ s, thông qua các giá trị biên độ của đại lượng điện áp và dòng điện stato, ngày nay gọi là điểu khiển vô hướng. - Luật điều chỉnh giữ khả năng quá tải không đổi: Để đảm bảo một số chỉ tiêu điều chỉnh mà không làm động cơ bị quá dòng thì cần phải điều chỉnh cả điện áp. Đối với biến tần nguồn áp thường có yêu cầu giữ cho khả năng quá tải về mômen là không đổi trong suốt dải điều chỉnh tốc độ. Luật điều chỉnh là u s  f s1 x / 2 với x phụ thuộc tải. Khi x=0 (Mc=const, ví dụ cơ cấu nâng hàng) thì luật điều chỉnh là us/fs =const. - Luật điều chỉnh tần số-điện áp giữ từ thông không đổi: Ở hệ thống điều khiển điện áp/tần số, sức điện động stato động cơ được điều chỉnh tỉ lệ với tần số đảm bảo duy trì từ thông khe hở không đổi. Động cơ có khả năng sinh mômen như nhau ở mọi tần số định mức. Có thể điều chỉnh tốc độ ở hai vùng: Vùng dưới tốc độ cơ bản: giữ từ thông không đổi thông qua điều khiển tỷ số sức điện động khe hở/tần số là hằng số. Vùng trên tốc độ cơ bản: giữ công suất động cơ không đổi, điện áp được duy trì không đổi, từ thông động cơ giảm theo tốc độ. - Điều chỉnh từ thông: Trong chế độ định mức, từ thông là định mức và mạch từ có công suất tối đa. Luật điều chỉnh tần số-điện áp là luật giữ gần đúng từ thông không đổi trên toàn dải điều chỉnh. Tuy Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 15
  18. nhiên từ thông động cơ, trên mỗi đặc tính, còn phụ thuộc vào rất nhiều vào độ trượt s, tức là phụ thuộc mômen tải trên trục động cơ. Vì thế trong các hệ điều chỉnh yêu cầu chất lượng cao cần tìm cách bù từ thông. r 1  (T1r ) 2 nên nếu muốn giữ từ thông ψr không đổi thì dòng điện phải Do đó I s  Lm được điều chỉnh theo tốc độ trượt. Phương pháp này có nhược điểm là mỗi động cơ phải cài đặt một sensor đo từ thông không thích hợp cho sản xuất đ ại trà và cơ cấu đo gắn trong đó bị ảnh hưởng bởi nhiệt độ và nhiễu. Nếu điều chỉnh cả biên độ và pha của dòng điện thì có thể điều chỉnh được từ thông rôto mà không cần cảm biến tốc độ. -Điều chỉnh tần số nguồn dòng điện. Phương pháp điều chỉnh này sử dụng biến tân nguồn dòng. Biến tần nguồn dòng có ưu điểm là tăng được công suất đơn vị máy, mạch lưc đơn giản mà vẫn thực hiện hãm tái sinh động cơ. Nguồn điện một chiều cấp cho nghịch lưu phải là nguồn điện điều khiển. Để tạo nguồn điện một chiều thường dùng chỉnh lưu điều khiển hoặc băm xung áp một chiều có bộ điều chỉnh dòng điện có cấu trúc tỷ lệ-tích phân(PI), mạch lọc là điện kháng tuyến tính có trị số điện cảm đủ lớn. 1.4.2. Điều khiển vectơ động cơ không đồng bộ: Một số hệ thống yêu cầu chất lượng điều chỉnh động cao thì các phương pháp điều khiển kinh điển khó đáp ứng được. Hệ thống điều khiển định hướng theo từ trường còn gọi là điều khiển vectơ, có thể đáp ứng các yêu cầu điều chỉnh trong chế độ tĩnh và động. Nguyên lý điều khiển vectơ dựa trên ý tưởng điều khiển vectơ động cơ không đồng bộ tương tự như điều khiển động cơ một chiều. Phương pháp này đáp ứng được yêu cầu điều chỉnh của hệ thống trong quá trình quá độ cũng như chất lượng điều khiển tối ưu mômen. Việc điều khiển vectơ dựa trên định hướng vectơ từ thông rôto có thể cho phép điều khiển tác rời hai thành phần dòng stato, từ đó có thể điều khiển độc lập từ thông và mômen động cơ. Kênh điều khiển từ thông thường gồm một mạch vòng điều chỉnh dòng điện sinh từ thông. Do đó hệ thống truyền động điện động cơ không đồng bộ có thể tạo được các đặc tính tĩnh và động cao, có thể so sánh được với động cơ một chiều. - Nguyên lý điều khiển vectơ: Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 16
  19. Dựa trên ý tưởng điều khiển động cơ không đồng bộ tương tự như điều khiển động cơ một chiều. Động cơ một chiều có thể điều khiển độc lập dòng điện kích từ và dòng phần ứng để đạt được mômen tối ưu theo công thức tính mômen: M  KI -  KI kt I - Iu Iu Ids* Mạch điều khiển và mạch ĐK Iqs* nghịch lưu ĐM Uu CKT Hình 1.9 Sự tương quan giữa điều khiển động cơ một chiều và điều khiển vectơ Tương tự ở điều khiển động cơ không đồng bộ, nếu ta sử dụng công thức : M=KmψrIqs=KmIdsIqs(khi chọn trục d trùng với chiều vectơ từ thông rôto) Thì có thể điều khiển M bằng cách điều chỉnh tốc độ đôc lập các thành phần dòng điện trên hai trục vuông góc của hệ toạ độ quay đồng bộ với vectơ từ thông rôto. Lúc này vấn đề điều khiển động cơ không đồng bộ tương tự như dòng điều khiển động cơ điện một chiều. Ở đây thành phần dòng điện ids đóng vai trò tương tự như dòng điện kích từ động cơ một chiều(ikt) và thành phần dòng iqs tương tự như dòng phần ứng động cơ một chiều(iu). Các thành phần có thể tính được nhờ sử dụng khái niệm vectơ không gian. Với ý tưởng định nghĩa vectơ không gian dòng điện của động cơ được mô tả ở hệ toạ độ quay với tốc độ ωs, các đại lượng dòng điện điện áp, từ thông sẽ là các đại lượng một chiều. q q Is2 Iqs1 Is1 Is2 Is1 Iqs2 Iqs s1 s2 s2 s1 d d Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 17 Ids1 Ids2 Ids r r
  20. Hình 1.10. Điều khiển độc lập hai thành phần dòng điện: Mômen và kích từ - Điều khiển trực tiếp mômen: Ra đời vào những năm cuối thập kỷ 90 của thế kỉ XX, thực hiện được đáp ứng nhanh. Vì ψr có quán tính cơ nên không biến đổi nhanh được, do đó ta chú trọng thay đổi ψ s không thay đổi ψr. Phương pháp này không điều khiển theo quá trình mà theo điểm làm việc. Nó khắc phục nhược điểm của điều khiển định hướng trường vectơ rôto ψ r cấu trúc phức tạp, đắt tiền, độ tin cậy thấp(hiện nay đã có vi mạch tích hợp cao, độ chính xác cao), việc đo dòng điện qua cảm biến gây chậm trễ, đáp ứng momen của hệ điều khiển vectơ chậm(cở 10ms) và ảnh hưởng của bão hoà mạch từ tới Rs lớn. 1.4.3. Luật điều chỉnh giữ khả năng quá tải không đổi. Luật điều chỉnh giữ khả năng quá tải không đổi hay điều chỉnh điện áp-tần số với từ thông là hàm của mômen tải thuộc phương pháp điều chỉnh vô hướng. Phương pháp này sử dụng bộ biến tần-động cơ không đồng bộ rôto lồng sóc. Ta giả thiết điện áp và dòng điện đầu ra của bộ biến tần là hình sin, có biên độ và tần số có thể thay đổi được thì nhìn vào sơ đồ thay thế và các biểu thức tính toán mômen, dòng điện…ta thấy khi điều chỉnh tần số thì trở kháng của động cơ thay đổi, do đó khi điều chỉnh tần số thì ta phải điều chỉnh cả điện áp để đảm bảo động cơ không bị quá dòng và đảm bảo khả năng sinh mômen theo yêu cầu đặc tính tải. Mômen lớn nhất mà động cơ không đồng bộ sinh ra được(với tần số và điện áp nhất định)chính là mômen tới hạnh, như vậy khả năng quá tải về mômen là λM=Mth/Mc nếu bỏ qua điện trở dây quấn stato thì biểu thức mômen tới hạn tính như sau: 2 U  M th  K th   f  Trong đó Kth là hằng số phụ thuộc vào thông số của động cơ. Điều kiện để giữ hệ số quá tải về mômen không đổi là: M thdm  M  M th / M c  M cdm Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn 18
nguon tai.lieu . vn