of x

Chuyên đề nghiên cứu sinh: Tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân Đà Lạt

Đăng ngày | Thể loại: | Lần tải: 0 | Lần xem: 0 | Page: 33 | FileSize: 1.53 M | File type: PDF
0 lần xem

Chuyên đề nghiên cứu sinh: Tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân Đà Lạt. Kết quả Chuyên đề nghiên cứu sinh: Tính toán thiết kế cấu hình che chắn phóng xạ cho kênh nơtron phục vụ nghiên cứu cơ bản và ứng dụng tại lò phản ứng hạt nhân Đà Lạt góp phần khẳng định lĩnh vực nghiên cứu khai thác các dòng nơtron từ các kênh ngang của Lò phản ứng hạt nhân Đà Lạt là một lĩnh vực nghiên cứu hiệu quả, không thể thiếu và cần được đầu tư chiều sâu. Mời bạn đọc cùng tham khảo.. Giống các thư viện tài liệu khác được bạn đọc chia sẽ hoặc do tìm kiếm lại và chia sẽ lại cho các bạn với mục đích học tập , chúng tôi không thu tiền từ người dùng ,nếu phát hiện nội dung phi phạm bản quyền hoặc vi phạm pháp luật xin thông báo cho chúng tôi,Ngoài thư viện tài liệu này, bạn có thể tải tài liệu miễn phí phục vụ học tập Vài tài liệu download sai font không hiển thị đúng, thì do máy tính bạn không hỗ trợ font củ, bạn tải các font .vntime củ về cài sẽ xem được.

https://tailieumienphi.vn/doc/chuyen-de-nghien-cuu-sinh-tinh-toan-thiet-ke-cau-hinh-che-chan-phong-xa-cho-kenh-2yy7tq.html

Nội dung


  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM ___________________ TRẦN TUẤN ANH TÍNH TOÁN THIẾT KẾ CẤU HÌNH CHE CHẮN PHÓNG XẠ CHO KÊNH NƠTRON PHỤC VỤ NGHIÊN CỨU CƠ BẢN VÀ ỨNG DỤNG TẠI LÒ PHẢN ỨNG HẠT NHÂN ĐÀ LẠT CHUYÊN ĐỀ NGHIÊN CỨU SINH NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS. VƯƠNG HỮU TẤN 2. TS. PHẠM ĐÌNH KHANG ĐÀ LẠT – 2012
  2. MỤC LỤC MỞ ĐẦU ................................................................................................................................... 3 CHƯƠNG 1: HIỆN TRẠNG KÊNH NƠTRON SỐ 3 ............................................................. 4 1.1. Tổng quan kênh nơtron số 3 ........................................................................................... 4 1.1.1. Phần cấu trúc bên trong tường bảo vệ sinh học lò phản ứng .................................. 4 1.1.2. Phần cấu trúc bên ngoài tường bảo vệ sinh học lò phản ứng ................................. 5 1.2. Các đặc trưng cơ bản của KS3 ....................................................................................... 6 1.3. Một số vấn đề tồn tại và biện pháp khắc phục ............................................................... 9 CHƯƠNG 2: TÍNH TOÁN MÔ PHỎNG MONTE CARLO ................................................. 11 2.1. Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ hiện tại .......... 11 2.1.1. Mô hình tính toán: ................................................................................................. 11 2.1.2. Kết quả tính toán ................................................................................................... 12 2.2. Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ mới ............... 14 2.2.1. Mô hình tính toán .................................................................................................. 14 2.2.2. Kết quả tính toán ................................................................................................... 16 CHƯƠNG 3: THIẾT KẾ VÀ LẮP ĐẶT HỆ CHE CHẮN PHÓNG XẠ MỚI ...................... 19 3.1 Thiết kế cấu hình che chắn phóng xạ mới ..................................................................... 19 3.1.1. Lắp khối cản xạ tại cửa KS3 .................................................................................. 19 3.1.2. Thiết kế cấu hình che chắn kín nước ..................................................................... 19 3.1.3. Thiết kế hệ che chắn phóng xạ bổ sung ................................................................. 21 3.1.4. Thiết kế cấu hình che chắn phóng xạ và bố trí hệ đo đa mục đích ........................ 22 3.1.5. Thiết kế chuẩn trực và chắn dòng nơtron .............................................................. 23 3.1.6. Thiết kế ray dẫn hướng cho toàn hệ ...................................................................... 24 3.2. Lắp đặt cấu hình che chắn phóng xạ mới ..................................................................... 26 3.2.1. Lắp đặt hệ che chắn kín nước ................................................................................ 26 3.2.2. Lắp đặt thiết bị đóng mở dòng nơtron ................................................................... 27 3.2.3. Lắp đặt cấu hình che chắn phóng xạ và bố trí hệ đo đa mục đích ......................... 28 3.3. Đánh giá an toàn bức xạ cho cấu hình che chắn phóng xạ mới ................................... 29 KẾT LUẬN ............................................................................................................................. 32 TÀI LIỆU THAM KHẢO ....................................................................................................... 33
  3. MỞ ĐẦU Lò phản ứng hạt nhân Đà Lạt là cơ sở duy nhất tại Việt Nam có nguồn nơtron mạnh, có thông lượng lớn và ổn định để có thể tiến hành các nghiên cơ bản và ứng dụng. Bên cạnh các lĩnh vực như điều chế đồng vị, nghiên cứu vật lý kỹ thuật lò, phân tích kích hoạt thì khai thác một cách có hiệu quả dòng nơtron từ các kênh ngang của lò phản ứng phục vụ các nghiên cứu vật lý cơ bản và đào tạo cán bộ là một định hướng khai thác lò không thể thiếu. Những kết quả nghiên cứu khoa học và đào tạo thu được trong thời gian qua được thể hiện qua số lượng các đề tài nghiên cứu khoa học đã được triển khai, số lượng học viên cao học và nghiên cứu sinh đã được đào tạo và số lượng các công trình nghiên cứu đã công bố. Các kết quả trên góp phần khẳng định lĩnh vực nghiên cứu khai thác các dòng nơtron từ các kênh ngang của Lò phản ứng hạt nhân Đà Lạt là một lĩnh vực nghiên cứu hiệu quả, không thể thiếu và cần được đầu tư chiều sâu. Các hoạt động nghiên cứu trên KS3 chủ yếu là nghiên cứu số liệu và cấu trúc hạt nhân sử dụng hệ phổ kế cộng biên độ các xung trùng phùng và thực tập vật lý nơtron cho sinh viên các trường đại học [4, 6]. Tuy nhiên không gian bố trí thí nghiệm tại KS3 chật hẹp nên rất khó khăn trong việc bố trí thí nghiệm do đó cần phải tiến hành quy hoạch lại KS3 theo hướng hiệu quả, an toàn thuận tiện nhằm khai thác tối đa các trang thiết bị hiện có, tiến hành đồng thời nhiều thí nghiệm khi lò hoạt động để nâng cao khả năng nghiên cứu. Để thực hiện việc này cần phải có các tính toán đưa ra một cấu hình che chắn phóng xạ cho hệ thiết bị nghiên cứu mới trong trường hợp tháo dỡ toàn bộ tường bao che chắn phóng xạ bằng bê tông và gỗ hiện tại nhằm mở rộng không gian thí nghiệm đảm bảo về mặt an toàn bức xạ và an toàn hạt nhân, tính thẩm mỹ phục vụ nghiên cứu cơ bản, ứng dụng và đào tạo. 3
  4. CHƯƠNG 1 HIỆN TRẠNG KÊNH NƠTRON SỐ 3 1.1. Tổng quan kênh nơtron số 3 Kênh nơtron số 3 (KS3) của Lò phản ứng hạt nhân Đà Lạt được mở và đưa vào sử dụng từ những năm 90 của thế kỷ truớc. Thời gian đầu kênh được sử dụng cho mục đích chụp ảnh nơtron và phân tích kích hoạt nơtron gamma tức thời (PGNAA). Để đảm bảo an toàn bức xạ cho người sử dụng, khu vực bên ngoài kênh được che chắn bằng vách tường bê tông, chỉ còn lại một lối đi hẹp cho người làm thí nghiệm. Trong thời gian này, các hoạt động khai thác kênh đã mang lại những kết quả khoa học có ý nghĩa được công bố tại các hội nghị khoa học trong và ngoài nước [[1]]. Sau giai đoạn này, hệ PGNAA được chuyển sang kênh nơtron số 4 để khai thác dòng nơtron có thông lượng cao hơn, KS3 đã tạm dừng hoạt động và khu vực phía trong kênh đã trở thành chỗ lưu giữ các nguồn phóng xạ và chất thải phóng xạ tạm thời. Theo thời gian, các hệ thống đóng mở dòng nơtron cũng đã bị hư hỏng và không sử dụng được. Năm 2003 KS3 đã được khôi phục lại để bố trí hệ đo phân rã gamma nối tầng. Các thiết bị chuẩn trực, dẫn dòng, đóng mở dòng được thiết kế, chế tạo lại cho phù hợp với việc bố trí thí nghiệm mới [[2]]. Các thiết bị che chắn phóng xạ và dẫn dòng nơtron mới về cơ bản đã đáp ứng được việc bố trí hai detector và các khối điện tử cho hệ phổ kế (n, 2γ). Từ đó đến nay KS3 được sử dụng cho mục đích chuyên nghiên cứu số liệu và cấu trúc hạt nhân sử dụng phổ kế cộng biên độ các xung trùng phùng. Cấu trúc hiện tại của KS3 gồm hai phần: 1.1.1. Phần cấu trúc bên trong tường bảo vệ sinh học lò phản ứng gồm: - Hệ dẫn dòng nơtron là một ống thép với hai phần đường kính 203mm dài 1650mm và đường kính 152mm dài 1500mm được nối với nhau. Phần nhỏ của ống thép được đặt tại hốc trụ rỗng trong vành phản xạ, phần còn lại kết thúc tại mặt ngoài tường bêtông bảo vệ sinh học của lò phản ứng. Kênh này cho dòng nơtron với phông gamma từ vùng hoạt thấp nhất. - Hệ đóng mở dòng nơtron là một thùng nhôm hình trụ đường kính 80mm dài 1500mm chứa đầy nước cất. Nước được dẫn vào thùng qua hai ống dẫn vào và ra thông qua hệ thống bơm điện. Trong trường hợp mở dòng nơtron, toàn bộ nước trong thùng được tháo ra ngoài thùng chứa bên ngoài và ngược lại. - Phin lọc Silic được bố trí sau hệ đóng mở dòng nơtron. Silic có tác dụng nhiệt hóa nơtron nhanh thành nơtron nhiệt. Chiều dài phin lọc 50cm là kích thước tối ưu để thông lượng nơtron nhiệt và tỉ số Cadmi là lớn nhất. - Hệ chuẩn trực dòng nơtron được làm bằng parafin pha Boron, Li, Cd là các vật liệu có tiết diện hấp thụ nơtron lớn có tác dụng tạo dòng nơtron đường kính 1,2cm và 2,5cm (tùy thuộc từng cấu hình thực nghiệm), ngoài ra còn có các khối chuẩn trực bằng chì để giảm các phông gamma từ vùng hoạt và gamma phát ra từ các vật liệu che chắn. - Khối cản xạ là một hộp vuông bằng thép được đặt chìm vào mặt ngoài của tường bê tông bảo vệ của Lò phản ứng. Khối này có kích thước 23 x 23cm và dày 11,4cm được làm từ các lá thép dày 6,3mm và chứa đầy chì có thể chuyển động theo thanh hướng ngang về một bên mở ra lối thao tác đến kênh ngang. Khối cản xạ có tác dụng làm giảm áp lực nước trong trường hợp rò rỉ nước từ 4
  5. thùng lò ra kênh và che chắn phóng xạ khi đóng kênh. Tuy nhiên trong quá trình xây dựng kênh từ giai đoạn trước, khối cản xạ đã được tháo ra và thay thế bởi một khối parafin pha Boron và chì để che chắn phóng xạ từ dòng nơtron. Việc đưa lại khối cản xạ theo đúng cấu trúc cũ cũng sẽ được thực hiện trong tính toán này. Sơ đồ cấu trúc bên trong KS3 được chỉ ra ở Hình 1.1. Ống thép Thùng nước cất Phin lọc Silic Chuẩn trực 12mm Nước ra 152mm 80 mm 1500 mm Nước vào/ra 3150 mm Chì H 2O Si Không khí khÝ Bơm điện Paraphin-B Bê tông Hình 1.1: Cấu trúc bên trong KS3 1.1.2. Phần cấu trúc bên ngoài tường bảo vệ sinh học lò phản ứng gồm: - Cửa kênh là một tấm sắt được chế tạo từ thép dày 9,5mm và được dát chì dày 3,2cm để tăng cường che chắn bức xạ. Cửa được gắn trên bản lề, ở phía trên cửa có vành đệm bằng cao su và bảy cái ép gien cho phép ép kín cửa để tránh mất nước lò trong trường hợp hở kênh ngang. Nếu trên kênh ngang không tiến hành công việc thì cửa sắt phải được đóng chắc chắn. - Hệ che chắn phóng xạ cho hệ phổ kế (n, 2γ) bao gồm hai buồng chì kích thước 30cm × 25cm × 20cm bao quanh hai detector HPGe. Phần tinh thể detector được bao bọc một lớp parafin pha LiF để chắn nơtron tán xạ từ mẫu và các vật liệu che chắn vào detector. Một hệ chuẩn trực dòng nơtron phụ cũng được thiết kế để tạo dòng nơtron với đường kính phù hợp với yêu cầu thực nghiệm. Toàn bộ hệ thiết bị trên được bố trí trên một bàn di chuyển dọc đường ray song song với dòng nơtron. Kết cấu này cho phép hai detector và hệ che chắn bức xạ có thể di chuyển vào gần hoặc ra xa cửa kênh. Với thiết kế như vậy yêu cầu đóng kín kênh khi không tiến hành thí nghiệm được tiến hành một cách dễ dàng. - Hệ chắn dòng nơtron là một khối parafin pha Boron hình trụ đường kính 30cm, cao 40cm được bố trí trong tường bao che chắn phóng xạ KS3. Hệ này có tác dụng bắt toàn bộ nơtron khi đi ra khỏi dòng. Hình 1.2 là sơ đồ mặt cắt ngang của KS3 và sơ đồ bố trí các thiết bị nghiên cứu trên kênh. - Tường bao che chắn phóng xạ có kích thước rộng 3,6m, dài 3,2m, dày 0,9m và cao 2,3m. Tường bao gồm hai lớp: Lớp thứ nhất gồm parafin pha boron dày 10cm và gỗ dày 20cm có tác dụng bắt nơtron tán xạ từ các vật liệu che chắn, lớp thứ 2 là các khối bê tông kích thước 40 x 20 x 10cm được xếp xen kẽ để che chắn gamma. Lối vào kênh rộng 0,5m dành cho nhân viên vào kênh bố trí thí nghiệm, lắp đặt các thiết bị điện tử và đổ nitơ cho các detector bán dẫn. Sơ đồ cấu trúc bên ngoài tường bảo vệ sinh học tại KS3 được chỉ ra ở Hình 1.2. 5
  6. Hệ che chắn phóng xạ cho hệ (n, 2γ) Bàn làm việc Tường bao che chắn Cửa kênh 3,6m Hệ chắn dòng nơtron Hình 1.2: Cấu trúc bên ngoài tường bảo vệ sinh học tại KS3 1.2. Các đặc trưng cơ bản của KS3 KS3 sử dụng phin lọc Silic để nhiệt hóa nơtron, phin lọc có đường kính 5cm, dài 50cm. Thông lượng nơtron nhiệt tại vị trí đặt mẫu là Φth = 1,02x106 n.cm-2.s-1, tỉ số cadmi đối với vàng RCd (Au) ~ 800 (sử dụng hộp Cd dày 1mm). Suất liều nơtron và gamma tại các vị trí trên sơ đồ ở Hình 1.3 trong trường hợp lò hoạt động ở mức công suất 500kW trong hai trường hợp kênh mở và kênh đóng. Kết quả phân bố suất liều nơtron và gamma trong hai trường hợp trên được chỉ ra ở Bảng 1.1, Hình 1.4 và Hình 1.5. 1 2 3 17 Chì 6 5 4 Parafin 16 +Boron 7 8 9 10 Cửa kênh 15 14 13 12 11 Hình 1.3: Sơ đồ vị trí đo liều tại KS3 6
  7. Bảng 1.1: Suất liều nơtron (Dn) và gamma (Dg) trong trường hợp kênh mở và kênh đóng Dn (µSv/h) Dg (µSv/h) Vị trí 0,5m 1m 1,5m 0,5m 1m 1,5m Mở Đóng Mở Đóng Mở Đóng Mở Đóng Mở Đóng Mở Đóng 1 0.60 0.2 0.57 0.2 0.57 0.2 1.47 0.7 1.03 0.7 1.17 0.7 2 0.80 0.3 0.67 0.3 0.93 0.3 1.33 1.1 1.73 0.9 1.43 0.8 3 0.93 0.2 0.87 0.2 0.93 0.2 5.03 3.7 4.37 3.5 4.43 3.5 4 1.63 0.4 2.00 0.4 1.63 0.4 8.63 3.1 9.77 3.8 10.13 5.4 5 1.23 0.3 1.50 0.3 1.53 0.3 7.17 3.0 7.80 2.5 8.97 4.5 6 1.23 0.4 0.80 0.4 1.03 0.4 9.10 2.0 5.93 1.5 9.07 2.5 7 1.10 0.9 0.90 0.8 0.87 0.7 6.83 5.2 5.77 4.8 8.43 5.5 8 1.73 0.9 1.60 0.7 1.63 0.9 13.37 8.0 13.03 8.5 14.00 7.7 9 1.67 0.9 1.63 0.8 1.60 0.9 19.00 10.0 12.03 10.2 16.87 10.1 10 1.67 0.7 1.73 0.8 1.70 0.8 22.17 13.2 26.33 15.5 23.20 12.3 11 0.60 0.3 0.70 0.7 0.63 0.8 15.57 14.6 24.10 23.7 24.50 21.2 12 0.13 0.1 0.23 0.2 0.20 0.2 2.23 1.2 2.63 2.4 3.13 2.6 13 0.20 0.2 0.23 0.2 0.23 0.2 0.81 0.7 1.01 0.7 0.79 1.0 14 0.23 0.1 0.23 0.2 0.23 0.1 0.63 0.5 0.58 0.5 0.63 0.5 15 0.30 0.1 0.33 0.1 0.37 0.1 0.52 0.3 0.52 0.4 0.49 0.2 16 0 .40 0.1 0.47 0.2 0.37 0.2 0.51 0.7 0.53 0.5 0.60 0.5 17 0.38 0.1 0.43 0.1 0.37 0.1 0.65 0.2 0.67 0.2 0.54 0.1 Khoảng cách 0,5m, 1m, 1,5m trên Bảng 1.1 tương ứng với chiều cao của tường bao KS3 tính từ mặt đất lên. 51 vị trí (17 vị trí x 3 khoảng cách) chọn đo là những vị trí có liên quan đến người làm thí nghiệm, bố trí hệ đo và không gian xung quanh KS3. 2.5 Kênh mở Kênh đóng 2 Suất liều nơtron ( µ Sv/h) 1.5 1 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 1.4: Phân bố suất liều nơtron trong trường hợp kênh mở và kênh đóng ở độ cao 1m 7
  8. 30 Kênh mở Kênh đóng 25 Suất liều gamma ( µ Sv/h) 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 1.5: Phân bố suất liều gamma trong trường hợp kênh mở và kênh đóng ở độ cao 1m Theo bảng kết quả ta thấy rằng trong trường hợp đóng kênh suất liều nơtron và gamma tại các vị trí bên trong tường bao (vị trí 1 đến 10) giảm rõ rệt đến giá trị giới hạn liều cho phép. Tuy nhiên tại vị trí 11 là vị trí tiếp giáp với cột nhiệt, suất liều gamma là khá lớn và không thay đổi trong cả hai trường hợp mở và đóng kênh, có thể giải thích là do nguyên nhân sau đây: phần cửa thép của cột nhiệt có khe hở khoảng 2cm, tại đó liều gamma là khá lớn, chính phông phóng xạ tại vị trí này ảnh hưởng trực tiếp đến suất liều gamma ở vị trí 11. Để giảm liều tại vị trí 11 cần thiết phải có che chắn bổ sung tại khe hở này. Hình 1.6 và 1.7 chỉ ra vị trí khe hở tại cột nhiệt khi có và không che chắn chì (lớp chì dày 5cm). Suất liều gamma tại khe hở cột nhiệt, vị trí 11 và vị trí 12 trước và sau che chắn chì được chỉ ra ở Bảng 1.2. Khe hở 1m 2cm Vị trí 11 Hình 1.6: Vị trí khe hở tại cột nhiệt 8
  9. Chì dày 5cm Hình 1.7: Vị trí khe hở tại cột nhiệt được che chắn 5cm chì Bảng 1.2: Suất liều gamma (Dg) trong trường hợp có và không che chắn chì Dg (µSv/h) Độ cao Khe hở CN Vị trí 11 Vị trí 12 Không chì Có chì Không chì Có chì Không chì Có chì 0.5m 15.5 3.7 15.6 2.8 2.2 1.2 1m 32.1 3.9 24.1 3.6 2.6 1.4 1.5m 45.8 5.0 24.5 4.3 3.1 1.5 1.3. Một số vấn đề tồn tại và biện pháp khắc phục Trong quá trình làm thực nghiệm trên KS3 đã xuất hiện một số vấn đề sau: 1. Cần thiết phải đưa lại khối cản xạ vào cửa kênh theo đúng cấu trúc của lò TRIGA MARK nhằm bảo đảm an toàn bức xạ và an toàn hạt nhân trong trường hợp sự cố rò rỉ nước từ thùng lò ra kênh nơtron. 2. Do giới hạn của tường che chắn xung quanh kênh nên không gian để tiến hành thí nghiệm rất chật chội, không thuận tiện cho việc bố trí hai hoặc ba detector đồng thời, đặc biệt khi đổ nitơ hoặc cần di chuyển các detector. 3. Khó khăn khi bố trí đồng thời hai thí nghiệm cùng lúc để tiết kiệm thời gian đo đạc như nghiên cứu phân rã gamma nối tầng, đo truyền qua, đo phổ nơtron,… 4. Cửa kênh phải mở thường xuyên khi tiến hành thí nghiệm nên không đảm bảo đuợc yêu cầu an toàn hạt nhân khi lò có sự cố rò rỉ nước qua các kênh ngang. 5. Không đảm bảo được mỹ quan cho kênh theo yêu cầu sạch đẹp, an toàn hạt nhân và an toàn phóng xạ, 9
  10. 6. Không thể hướng dẫn đồng thời nhiều sinh viên khi có các đoàn tham quan, thực tập. Nhằm mở rộng hướng nghiên cứu cơ bản, ứng dụng và đào tạo đồng thời đảm bảo an toàn bức xạ và thuận tiện trong bố trí thí nghiệm, trên cơ sở số liệu phân bố suất liều nơtron và gamma đã khảo sát xung quanh khu vực KS3 đối chiếu với giới hạn liều đối với nhân viên bức xạ là 20mSv/năm tức 10µSv/giờ [[3]] cho thấy hoàn toàn có thể tháo dỡ được tường bao che chắn bức xạ hiện nay nếu thay đổi lại các thiết bị dẫn dòng, hệ che chắn phóng xạ trước cửa kênh và một số che chắn bổ sung tại khu vực cột nhiệt. Mục tiêu được đặt ra như sau: 1. Dựa trên không gian của kênh hiện có, tính toán thiết kế lại hệ thống che chắn, dẫn dòng, bố trí thí nghiệm theo hướng bố trí các hệ đo nhiều detector, tiến hành đồng thời nhiều thí nghiệm, thuận tiện trong khai thác sử dụng thiết bị, hướng dẫn thực tập, đảm bảo mỹ quan cho lò phản ứng cho việc mở rộng không gian bố trí hệ đo nhằm đảm bảo an toàn bức xạ cho người làm thí nghiệm và an toàn cho thiết bị bằng kỹ thuật Monte Carlo. 2. Đưa ra bản thiết kế và phương án thi công tối ưu khi tháo dỡ và xây dựng lại không gian của kênh. 3. Khôi phục lại khối cản xạ, đảm bảo việc kín nước cho kênh trong trường hợp sự cố mất nước lò theo các kênh ngang. 4. Tháo dỡ tường bao và bố trí một hệ đo đa mục đích phục vụ nghiên cứu cơ bản, nghiên cứu ứng dụng và đào tạo. 10
  11. CHƯƠNG 2 TÍNH TOÁN MÔ PHỎNG MONTE CARLO Mô phỏng cấu hình che chắn phóng xạ được thực hiện bằng chương trình MCNP nhằm xác định suất liều nơtron và gamma tại 51 vị trí như nêu trên. Các kết quả tính toán là cơ sở để người làm thực nghiệm đưa ra được cấu hình che chắn phóng xạ tối ưu cho hệ thiết bị điện tử và khu vực làm việc đảm bảo tiêu chuẩn an toàn bức xạ. Mô hình tính toán gồm 02 mô hình: Mô hình tính toán cho cấu hình che chắn phóng xạ hiện tại (validation chương trình tính toán) và mô hình tính toán cho cấu hình che chắn phóng xạ mới trong trường hợp tháo dỡ tường bao che chắn tại KS3. 2.1. Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ hiện tại 2.1.1. Mô hình tính toán: - Hệ dẫn dòng nơtron: là một ống thép với hai phần đường kính 203mm dài 1650mm và đường kính 152mm dài 1500mm được nối với nhau. Phần nhỏ của ống thép được đặt tại hốc trụ rỗng trong vành phản xạ, phần còn lại kết thúc tại mặt ngoài tường bêtông bảo vệ sinh học của lò phản ứng. Kênh này cho dòng nơtron với phông gamma từ vùng hoạt thấp nhất. - Phin lọc Silic 50cm: được bố trí sau hệ đóng mở dòng nơtron. Silic có tác dụng nhiệt hóa nơtron nhanh thành nơtron nhiệt. Chiều dài phin lọc 50cm là kích thước tối ưu để thông lượng nơtron nhiệt và tỉ số Cadmi là lớn nhất. - Hệ chuẩn trực dòng nơtron: kính ngoài 203mm dài 300mm được làm bằng parafin pha Boron, Li, Cd [5] là các vật liệu có tiết diện hấp thụ nơtron lớn có tác dụng tạo dòng nơtron đường kính 1,2cm và 2,5cm (tùy thuộc từng cấu hình thực nghiệm), ngoài ra còn có các khối chuẩn trực bằng chì để giảm các phông gamma từ vùng hoạt và gamma phát ra từ các vật liệu che chắn. - Hệ che chắn phóng xạ cho hệ phổ kế (n, 2γ): gồm hai buồng chì kích thước 35 x 25 x 20cm bao quanh hai tinh thể của detector HPGe - Hệ chắn dòng nơtron: Hệ chắn dòng nơtron là một khối parafin pha Boron hình trụ đường kính 30cm, cao 40cm được bố trí trong tường bao che chắn phóng xạ KS3. Hệ này có tác dụng bắt toàn bộ nơtron khi đi ra khỏi dòng - Tường bao che chắn phóng xạ: có kích thước rộng 3,6m, dài 3,2m, dày 0,9m và cao 2,3m. Tường bao gồm hai lớp: Lớp thứ nhất gồm parafin pha boron dày 10cm và gỗ dày 20cm có tác dụng bắt nơtron tán xạ từ các vật liệu che chắn, lớp thứ 2 là các khối bê tông kích thước 40 x 20 x 10cm được xếp xen kẽ để che chắn gamma. Lối vào kênh rộng 0,5m dành cho nhân viên vào kênh bố trí thí nghiệm, lắp đặt các thiết bị điện tử và đổ nitơ cho các detector bán dẫn. Cấu trúc kênh dẫn nơtron và cấu hình bố trí thí nghiệm trên KS3 được chỉ ra trên Hình 2.1. 11
  12. Buồng chì Hệ chắn che chắn dòng Tường bao detector nơtron 14 15 Hệ dẫn dòng 13 nơtron 12 16 11 7 Vị trí bàn 17 8 làm việc 9 6 10 5 1 4 2 3 Phin lọc Silic Hình 2.1: Sơ đồ hệ che chắn phóng xạ hiện tại trên KS3 2.1.2. Kết quả tính toán Kết quả tính toán và đo đạc thực nghiệm suất liều nơtron và gamma tại 17 vị trí theo 3 độ cao của tường bao 0,5m, 1m và 1,5m được chỉ ra ở Bảng 2.1, 2.2 và Hình 2.2, 2.3. Bảng 2.1: Suất liều nơtron tính toán và đo thực nghiệm Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m Vị trí MCNP Exp MCNP Exp MCNP Exp 1 0.84 0.6 0.76 0.57 0.42 0.57 2 0.66 0.8 0.92 0.67 0.71 0.93 3 0.53 0.93 0.65 0.87 0.69 0.93 4 2.29 1.63 2.67 2 2.42 1.63 5 1.49 1.23 1.77 1.5 2.17 1.53 6 1.34 1.23 1.64 0.8 1.99 1.03 7 0.84 1.1 0.97 0.9 1.14 0.87 8 1.04 1.73 1.08 1.6 1.33 1.63 9 1.05 1.67 1.21 1.63 1.39 1.6 10 0.99 1.67 1.19 1.73 1.35 1.7 11 0.19 0.6 0.23 0.7 0.26 0.63 12 0.08 0.13 0.09 0.23 0.1 0.2 13 0.14 0.2 0.17 0.23 0.19 0.23 14 0.14 0.23 0.16 0.23 0.18 0.23 12
  13. 15 0.2 0.3 0.22 0.33 0.23 0.37 16 0.2 0.4 0.22 0.47 0.22 0.37 17 0.35 0.38 0.4 0.43 0.41 0.37 3 MCNP Exp 2.5 Suất liều nơtron ( µ Sv/h) 2 1.5 1 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 2.2: So sánh phân bố suất liều nơtron ở độ cao 1m Bảng 2.2: Suất liều gamma tính toán và đo thực nghiệm Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m Vị trí MCNP Exp MCNP Exp MCNP Exp 1 2.26 1.47 2.19 1.03 2.64 1.17 2 2.27 1.33 2.52 1.73 2.85 1.43 3 5.9 5.03 8.49 4.37 9.36 4.43 4 9.01 8.63 8.53 9.77 6.83 10.13 5 3.89 7.17 3.27 7.8 2.53 8.97 6 2.87 9.1 2.31 5.93 2.32 9.07 7 5.19 6.83 5.47 5.77 6.27 8.43 8 11.65 13.37 15.84 13.03 14.82 14 9 17.25 19 25.04 12.03 23.53 16.87 10 23.8 22.17 28.51 26.33 26.12 23.2 11 19.09 15.57 24.94 24.1 27.3 24.5 12 5.44 2.23 6.56 2.63 7.75 3.13 13 4.87 0.81 5.86 1.01 6.92 0.79 14 4.65 0.63 5.59 0.58 6.32 0.63 15 2.03 0.52 1.74 0.52 1.95 0.49 16 1.33 0.51 1.33 0.53 1.49 0.6 17 3.53 0.65 3.66 0.67 4.01 0.54 13
  14. 30 MCNP Exp 25 Suất liều gamma ( µ Sv/h) 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 2.3: So sánh phân bố suất liều gamma ở độ cao 1m Từ bảng kết quả tính toán và sơ đồ phân bố suất liều nơtron và gamma tại 17 vị trí quan tâm có thể đưa ra một số kết luận sau: - Kết quả tính suất liều nơtron tại vị trí quan tâm khá phù hợp với kết quả đo đạc thực nghiệm. Giá trị liều tại các vị trí thường xuyên làm việc là 1 và 2 (vị trí đặt bàn làm việc), 3 (vị trí đặt các khối điện tử chức năng) và 4 (vị trí thay đổi mẫu) đều nhỏ hơn giá trị giới hạn liều cho phép theo tiêu chuẩn an toàn bức xạ (10µSv/h). - Suất liều gamma tại các vị trí 8, 9, 10, 11 là tương đối lớn (>10µSv/h). Nguyên nhân chính có thể được giải thích là do: + Vị trí 8, 9, 10 (trong tường bao): do tâm dòng nơtron nằm lệch về bên phải so với cửa kênh và cửa thép của kênh cũng mở ra bên phải, vì vậy không thể bố trí che chắn phóng xạ ở khoảng không gian này. + Vị trí 11 (ngoài tường bao): do ảnh hưởng của phông phóng xạ từ khe hở 2cm ở cột nhiệt. (xem Bảng 1.2). Kết quả tính toán phù hợp với kết quả thực nghiệm khẳng định rằng trên cơ sở cấu hình che chắn phóng xạ hiện tại có thể xây dựng mô hình tính toán cho cấu hình che chắn thí nghiệm mới trong trường hợp tháo dỡ tường bao tại KS3. Tuy nhiên trong cấu hình mới cần phải tính toán che chắn bổ sung các vị trí ảnh hưởng nhằm đảm bảo an toàn bức xạ. 2.2. Tính toán suất liều nơtron và gamma cho cấu hình che chắn phóng xạ mới 2.2.1. Mô hình tính toán - Hệ dẫn dòng nơtron: tương tự cấu hình cũ - Phin lọc Silic 50cm: tương tự cấu hình cũ - Hệ chuẩn trực dòng nơtron: gồm ba khối parafin pha B4C có kích thước tương tự nhau với khối trụ đường kính ngoài 203mm dài 300mm, trên thân khối trụ này gia công hai lỗ để đặt ống dẫn nước từ hệ đóng mở dòng nơtron. Một 14
  15. khối trụ nhỏ hơn với đường kính ngoài 100mm, đường kính trong 30mm, dài 300mm được đúc bằng parafin pha B4C mật độ cao có tác dụng dẫn dòng nơtron ra ngoài kênh. Các khối chuẩn trực này còn có tác dụng làm giảm liều phóng xạ từ vùng hoạt ra cửa kênh - Khối cản xạ: là một hộp vuông bằng thép được đặt chìm vào mặt ngoài của tường bê tông bảo vệ của Lò phản ứng. Khối này có kích thước 23 x 23cm và dày 11,4cm được làm từ các lá thép dày 6,3mm và chứa đầy chì có thể chuyển động theo thanh hướng ngang về một bên mở ra lối thao tác đến kênh ngang. Khối cản xạ có tác dụng làm giảm áp lực nước trong trường hợp rò rỉ nước từ thùng lò ra kênh và che chắn phóng xạ khi đóng kênh - Hệ che chắn kín nước: Cửa kênh KS3 hiện tại được thay bằng một tấm thép có kích thước 61,3 x 40,4cm, dày 10mm được vít chặt vào cửa kênh. Giữa cửa kênh và tấm thép có một đệm cao su có tác dụng làm kín nước. Tại vị trí tâm dòng trên tấm thép gia công một lỗ tròn đường kính 10cm và đặt một nắp nhôm đường kính 6cm, dài 8cm, dày 2mm có đệm cao su và các đai ốc để bắt chặt vào tấm thép cửa kênh, có tác dụng để nơtron đi qua nhưng vẫn đảm bảo kín nước trong trường hợp kênh bị rò rỉ nước từ thùng lò - Hệ che chắn phóng xạ bổ sung trước cửa kênh: Trong trường hợp lắp lại khối cản xạ vào cửa kênh thì một phần không gian trong lòng cửa kênh không được che chắn phóng xạ, do đó cần phải tiến hành che chắn bổ sung trước cửa kênh để giảm liều phóng xạ. Hệ che chắn phóng xạ bổ sung trước bao gồm hai lớp: lớp thứ nhất là khối parafin pha B4C kích thước 47 x 53 x 13cm có tác dụng che chắn nơtron từ kênh và khối chì kích thước 57 x 63 x 18cm có tác dụng che chắn gamma tán xạ trước cửa kênh. Tại vị trí tâm dòng nơtron trên hệ che chắn phóng xạ đặt một chuẩn trực đường kính 3cm để tạo dòng nơtron đến mẫu chiếu - Hệ che chắn phóng xạ cho detector: che chắn phóng xạ cho hệ phổ kế cộng biên độ các xung trùng phùng bao gồm hai buồng chì kích thước 35 x 25 x 20cm bao quanh hai tinh thể của detector HPGe. Một buồng chì có cùng kích thước được đặt bên trên vuông góc hai buồng chì kia để che chắn phóng xạ cho detector nhấp nháy NaI(Tl) trong trường hợp bố trí hệ đo (n, 3γ). - Hệ đo nơtron truyền qua: gồm giá để mẫu đo, buồng chì che chắn phóng xạ cho ống đếm nơtron. - Hệ chắn dòng nơtron: là khối chì đường kính 36cm, dài 33cm bao quanh khối parafin+B4C đường kính 22,6cm, dài 25cm được lắp trên một chân đế có thể di chuyển được trên ray dẫn hướng. Hệ này có tác dụng chắn toàn bộ dòng nơtron từ kênh đi ra Hình 2.4 là mô hình tính toán cho cấu hình che chắn phóng xạ và bố trí thí nghiệm mới tại KS3 trong trường hợp tháo dỡ tường bao. 15
  16. Hệ đo Hệ chắn Hệ che nơtron 14 dòng chắn phóng truyền qua 15 nơtron xạ bổ sung 13 12 16 Cột nhiệt 11 7 17 8 9 6 10 5 1 4 2 3 Khối cản xạ KS4 Hình 2.4: Sơ đồ hệ che chắn phóng xạ mới trên KS3 2.2.2. Kết quả tính toán Phân bố suất liều nơtron và gamma được chỉ ra ở Bảng 2.3, Bảng 2.4 và Hình 2.5, Hình 2.6. Bảng 2.3: Bảng so sánh suất liều nơtron tính toán cho 2 cấu hình mới và cũ Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m Vị trí CH mới CH cũ CH mới CH cũ CH mới CH cũ 1 0.39 0.84 0.84 0.76 0.39 0.42 2 0.44 0.66 0.69 0.92 0.08 0.71 3 0.37 0.53 0.22 0.65 0.35 0.69 4 0.14 2.29 0.22 2.67 0.34 2.42 5 0.23 1.49 0.50 1.77 0.51 2.17 6 0.27 1.34 0.61 1.64 0.74 1.99 7 0.65 0.84 1.66 0.97 1.98 1.14 8 0.81 1.04 1.66 1.08 2.17 1.33 9 0.85 1.05 1.28 1.21 1.64 1.39 10 0.61 0.99 1.20 1.19 1.01 1.35 11 0.37 0.19 0.70 0.23 0.90 0.26 12 0.32 0.08 0.66 0.09 0.84 0.10 13 0.29 0.14 0.54 0.17 0.72 0.19 14 0.23 0.14 0.46 0.16 0.61 0.18 16
  17. 15 0.66 0.20 0.15 0.22 0.20 0.23 16 0.36 0.20 0.86 0.22 1.05 0.22 17 0.26 0.35 0.49 0.40 0.51 0.41 3 CH mới CH cũ 2.5 Suất liều nơtron ( µ Sv/h) 2 1.5 1 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 2.5: So sánh phân bố suất liều nơtron tính toán giữa cấu hình mới và cũ ở độ cao 1m Bảng 2.4: Bảng so sánh suất liều gamma tính toán cho 2 cấu hình mới và cũ Độ cao 0.5 m Độ cao 1 m Độ cao 1.5 m Vị trí CH mới CH cũ CH mới CH cũ CH mới CH cũ 1 0.51 2.26 2.50 2.19 0.82 2.64 2 0.48 2.27 6.21 2.52 0.96 2.85 3 0.21 5.90 6.65 8.49 0.96 9.36 4 11.84 9.01 10.82 8.53 8.28 6.83 5 10.93 3.89 9.65 3.27 7.05 2.53 6 6.84 2.87 6.52 2.31 6.50 2.32 7 1.85 5.19 3.26 5.47 4.01 6.27 8 2.20 11.65 6.62 15.84 6.57 14.82 9 1.63 17.25 7.55 25.04 9.14 23.53 10 1.67 23.80 4.56 28.51 6.04 26.12 11 6.27 19.09 9.08 24.94 11.26 27.30 12 5.17 5.44 6.41 6.56 6.72 7.75 13 4.42 4.87 6.83 5.86 5.06 6.92 14 5.62 4.65 5.90 5.59 4.13 6.32 15 1.82 2.03 2.67 1.74 3.02 1.95 16 2.88 1.33 3.64 1.33 5.12 1.49 17 2.06 3.53 1.47 3.66 3.28 4.01 17
  18. 30 CH mới CH cũ 25 Suất liều gamma ( µ Sv/h) 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Vị trí Hình 2.6: So sánh phân bố suất liều gamma tính toán giữa cấu hình mới và cũ ở độ cao 1m Từ kết quả tính toán nhận thấy rằng với cấu hình che chắn phóng xạ và cấu hình bố trí thí nghiệm mới, suất liều nơtron và gamma giảm đáng kể và nằm trong giới hạn liều cho phép. Chứng tỏ rằng việc sử dụng công cụ tính toán MCNP nhằm mô phỏng một cấu hình che chắn mới đáp ứng được yêu cầu đảm bảo an toàn bức xạ khu vực xung quanh KS3 trong trường hợp tháo dỡ toàn bộ tường bao. Các ảnh hưởng của phông phóng xạ từ các kênh thực nghiệm lân cận cũng đã được tính toán và đo thực nghiệm trong bài toán này. Vì vậy việc che chắn bổ sung nhằm giảm liều ảnh hưởng đóng vai trò quan trọng trong phân bố liều tại các vị trí quan tâm xung quanh kênh thực nghiệm. 18
  19. CHƯƠNG 3 THIẾT KẾ VÀ LẮP ĐẶT HỆ CHE CHẮN PHÓNG XẠ MỚI 3.1 Thiết kế cấu hình che chắn phóng xạ mới 3.1.1 Lắp khối cản xạ tại cửa KS3 Khối cản xạ là một hộp vuông bằng thép được đặt chìm vào mặt ngoài của tường bê tông bảo vệ của Lò phản ứng. Khối này có kích thước 23 x 23cm và dày 11,4cm được làm từ các lá thép dày 6,3mm và chứa đầy chì có thể chuyển động theo thanh hướng ngang về một bên mở ra lối thao tác đến kênh ngang. Khối cản xạ có tác dụng làm giảm áp lực nước trong trường hợp rò rỉ nước từ thùng lò ra kênh và che chắn phóng xạ khi đóng kênh. Trong quá trình xây dựng KS3 từ những năm 80, khối cản xạ đã được tháo ra khỏi cửa kênh, thay vào đó các khối parafin và chì được đúc để che chắn kín khoảng không gian trống này. Theo khuyến cáo của chuyên gia nguyên tử năng quốc tế (IAEA) về lò TRIGA thì cần thiết phải đưa khối cản xạ về đúng với cấu trúc ban đầu nhằm đảm bảo an toàn phóng xạ và an toàn hạt nhân cho Lò phản ứng. Kích thước và sơ đồ bố trí khối cản xạ tại cửa KS3 được cho ở Hình 3.1. Hình 3.1: Cấu trúc cửa kênh khi lắp lại khối cản xạ 3.1.2. Thiết kế cấu hình che chắn kín nước Cửa kênh KS3 hiện tại được thay bằng một tấm thép có kích thước 61,3 x 40,4cm, dày 10mm được vít chặt vào cửa kênh. Giữa cửa kênh và tấm thép có một đệm cao su có tác dụng làm kín nước. Tại vị trí tâm dòng trên tấm thép gia công một lỗ tròn đường kính 10cm và đặt một nắp nhôm đường kính 6cm, dài 8cm, dày 2mm có đệm cao su và các đai ốc để bắt chặt vào tấm thép 19
  20. cửa kênh, có tác dụng để nơtron đi qua nhưng vẫn đảm bảo kín nước trong trường hợp kênh bị rò rỉ nước từ thùng lò (xem Hình 3.2 và 3.3). Hình 3.2: Kích thước nắp nhôm kín nước Hình 3.3: Hệ che chắn kín nước với cửa sổ nhôm dày 2mm Sự suy giảm thông lượng nơtron khi đi qua bề dày lớp nhôm và suất liều nơtron và gamma đóng góp trong trường hợp nơtron tương tác với cửa sổ nhôm được tính toán bằng chương trình MCNP4C2. Kết quả trên Hình 3.4 và Hình 3.5 chỉ ra rằng với bề dày lớp nhôm 2mm thông lượng nơtron nhiệt giảm khoảng 2% và suất liều nơtron và gamma do tán xạ nơtron với nắp nhôm đóng góp vào phông phóng xạ tại vị trí bàn làm việc của KS3 là 20
943164

Tài liệu liên quan


Xem thêm