of x

Bài tập đại số tuyến tính(1)

Đăng ngày | Thể loại: | Lần tải: 0 | Lần xem: 4 | Page: 6 | FileSize: M | File type: PDF
4 lần xem

Bài tập đại số tuyến tính(1). Tài liệu tham khảo dành cho giáo viên và sinh viên - Bài tập đại số tuyến tính(1). Giống các giáo án bài giảng khác được thành viên chia sẽ hoặc do sưu tầm lại và chia sẽ lại cho các bạn với mục đích học tập , chúng tôi không thu phí từ bạn đọc ,nếu phát hiện nội dung phi phạm bản quyền hoặc vi phạm pháp luật xin thông báo cho chúng tôi,Ngoài giáo án bài giảng này, bạn có thể download Tải tài liệu luận văn,bài tập phục vụ học tập Một số tài liệu tải về thiếu font chữ không xem được, thì do máy tính bạn không hỗ trợ font củ, bạn download các font .vntime củ về cài sẽ xem được.

https://tailieumienphi.vn/doc/bai-tap-dai-so-tuyen-tinh-1-sapstq.html

Nội dung

tailieumienphi.vn xin giới thiệu đến cộng đồng thư viện Bài tập đại số tuyến tính(1).Để giới thiệu thêm cho các Thầy cô, các bạn sinh viên, học viên nguồn thư viện Khoa Học Tự Nhiên,Toán học cần thiết cho nghiên cứu khoa học.Trân trọng kính mời các bạn đang tìm cùng tham khảo ,Tài liệu Bài tập đại số tuyến tính(1) thuộc danh mục ,Khoa Học Tự Nhiên,Toán học được chia sẽ bởi user toan-hoc tới mọi người nhằm mục đích tham khảo , tài liệu này đã đưa vào thể loại Khoa Học Tự Nhiên,Toán học , có tổng cộng 6 trang , thuộc file .PDF, cùng chủ đề còn có đại số tuyến tính, tài liệu đại số tuyến tính, bài tập đại số tuyến tính, luyện thi đại số tuyến tính, ôn tập đại số tuyến tính ,bạn có thể download free , hãy giới thiệu cho mọi người cùng học tập . Để tải file về, các bạn click chuột nút download bên dưới
Tài liệu tham khảo dành cho thầy giáo và sinh viên - Bài tập đại số tuyến tính(1) MA TRẬN VÀ ĐỊNH THỨC ⎛ 2 1 −1⎞ ⎛− 2 1 0 ⎞, bên cạnh đó Bài 1: Cho A = ⎜ ⎜ ⎟ và B= ⎜ ⎟, thêm nữa ⎝ 0 1 − 4⎟ ⎠ ⎜ ⎝−3 2 2 ⎟ ⎠ Tính 3A ± 2B; ATA; AAT, nói thêm ⎛4 0 5 ⎞ ⎛1 1 1⎞ ⎛ 2 − 3⎞, bên cạnh đó Bài 2: Cho A = ⎜ ⎜ ⎟ ,B= ⎟ ⎜ 3 5 7 ⎟ và C = ⎜ ⎟ ⎜ ⎜0 1 ⎟ ⎟ ⎝ −1 3 2 ⎠ ⎝ ⎠ ⎝ ⎠ Tính những biểu thức sau: A ± B; 2A; -3B; 2A – 3B; ATC; C, thêm nữa A + B; (C, bên cạnh đó A)T – 2BT, nói thêm là ⎛x y⎞ ⎛ x 6 ⎞ ⎛ 4 x + y⎞, thêm nữa Bài 3: Tìm x, y, z và w biết rằng: 3⎜ ⎜ ⎟ = ⎜ ⎟ ⎜ − 1 2w ⎟ + ⎜ z + w ⎟ ⎜ ⎟ ⎝ z w⎠ ⎝ ⎠ ⎝ 3 ⎟⎠ ⎛ 2 + 5i − 2i ⎞ ⎛ i +1 2 − i⎞, nói thêm Bài 4: Trong M2(C) cho những ma trận: B= ⎜ ⎜ ⎟ và C = ⎟ ⎜ 6i + 2 i − 3 ⎟ , bên cạnh đó ⎜ ⎟ ⎝ 2i + 4 7 − 3i ⎠ ⎝ ⎠ Tìm A ∈ M2(C) sao cho 2A = 3B – 2C, nói thêm là Bài 5: Tính
  1. MA TRẬN VÀ ĐỊNH THỨC ⎛ 2 1 −1⎞ ⎛− 2 1 0 ⎞ Bài 1: Cho A = ⎜ ⎜ ⎟ và B= ⎜ ⎟. ⎝ 0 1 − 4⎟ ⎠ ⎜ ⎝−3 2 2 ⎟ ⎠ Tính 3A ± 2B; ATA; AAT. ⎛4 0 5 ⎞ ⎛1 1 1⎞ ⎛ 2 − 3⎞ Bài 2: Cho A = ⎜ ⎜ ⎟ ,B= ⎟ ⎜ 3 5 7 ⎟ và C = ⎜ ⎟ ⎜ ⎜0 1 ⎟ ⎟ ⎝ −1 3 2 ⎠ ⎝ ⎠ ⎝ ⎠ Tính các biểu thức sau: A ± B; 2A; -3B; 2A – 3B; ATC; C.A + B; (C.A)T – 2BT. ⎛x y⎞ ⎛ x 6 ⎞ ⎛ 4 x + y⎞ Bài 3: Tìm x, y, z và w biết rằng: 3⎜ ⎜ ⎟ = ⎜ ⎟ ⎜ − 1 2w ⎟ + ⎜ z + w ⎟ ⎜ ⎟ ⎝ z w⎠ ⎝ ⎠ ⎝ 3 ⎟⎠ ⎛ 2 + 5i − 2i ⎞ ⎛ i +1 2 − i⎞ Bài 4: Trong M2(C) cho các ma trận: B= ⎜ ⎜ ⎟ và C = ⎟ ⎜ 6i + 2 i − 3 ⎟ . ⎜ ⎟ ⎝ 2i + 4 7 − 3i ⎠ ⎝ ⎠ Tìm A ∈ M2(C) sao cho 2A = 3B – 2C. Bài 5: Tính các tích sau: ⎛ 6 ⎞ ⎛ 1 −3 2 ⎞ ⎛ 2 5 6⎞ ⎛ 5 0 2 3⎞ ⎜ ⎟ ⎛ 3 1 1 ⎞ ⎛ 1 1 − 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ − 2⎟ ⎜ ⎟ ⎜ ⎟ a) ⎜ 3 −4 1 ⎟ ⎜ 1 2 5 ⎟ ; b) ⎜ 4 1 5 3 ⎟ ⎜ ⎟ ; d) ⎜ 2 1 2 ⎟ ⎜ 2 − 1 1 ⎟ ; ⎜ 2 −5 3 ⎟ ⎜ 1 3 2⎟ ⎜ 3 1 − 1 2⎟ ⎜ 7 ⎟ ⎜ 1 2 3⎟ ⎜ 1 0 1 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ 4 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛0 0 1⎞ ⎜ ⎟ ⎛ − 1 − 1⎞ ⎛1 2 1⎞ ⎛ 2 3 1 ⎞ ⎛1 2 1⎞ 1 2⎟ ⎜ ⎟ ⎛ 4⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ c) ⎜ i ⎜2 ⎜ 2 2i ⎟ ⎜ ⎟ . ⎜ 1⎟ e) ⎜ 0 1 2 ⎟ ⎜ − 1 1 0 ⎟ ⎜ 0 1 2⎟ 2i 3⎟ ⎜ ⎜3 ⎟ ⎜ i ⎝ 1⎟ ⎝ ⎠ ⎠ ⎜ 3 1 1 ⎟ ⎜ 1 2 − 1⎟ ⎝ ⎠ ⎝ ⎠ ⎜3 1 1⎟ ⎝ ⎠ ⎝ 3 4⎟ ⎠ ⎛ 0 1 0⎞ ⎜ ⎟ Bài 6: a) Cho A = ⎜ 0 0 1 ⎟ . Tính A2, A3. ⎜ 0 0 0⎟ ⎝ ⎠ 2 ⎛1 2 1⎞ 3 ⎜ ⎟ n ⎛ 2 1⎞ ⎛ 1 1⎞ b) Tính: ⎜ 0 1 2 ⎟ c) ⎜ ⎜ 1 3⎟ ⎟ d) ⎜ ⎜ 0 1⎟ ⎟ ⎜3 1 1⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ Bài 7: Tính AB – BA nếu:
  2. ⎛1 2 ⎞ ⎛ 2 − 3⎞ a) A = ⎜ ⎟ và B = ⎜− 4 1 ⎟; ⎜ ⎜ ⎝ 4 −1⎟ ⎠ ⎝ ⎟ ⎠ ⎛ 2 3−i 1 ⎞ ⎛ 1 2 2i + 1⎞ ⎜ ⎟ ⎜ ⎟ b) A = ⎜ i − 3 1 0 ⎟ và B = ⎜0 1 2 ⎟; ⎜ 1 ⎝ 2 i − 1⎟ ⎠ ⎜3 1 i +1 ⎟ ⎝ ⎠ ⎛ 1 1 1⎞ ⎛ 7 5 3⎞ ⎜ ⎟ ⎜ ⎟ c) A = ⎜ 0 1 1⎟ và B = ⎜ 0 7 5⎟ . ⎜ 0 0 1⎟ ⎜ 0 0 7⎟ ⎝ ⎠ ⎝ ⎠ Bài 8: Tính các định thức sau: 2 3 −1 4 1 3 1 2 a) ; b) − 3 4 2 ; c) − 2 5 2 ; 3 4 5 1 3 3 2 −1 2 −1 4 6 −1 2 5 3 x 1 1 1 7 10 2 −2 3 0 2 −1 1 x 1 1 d) ; e) f) 1 −4 8 1 4 1 0 5 1 1 x 1 2 0 5 0 2 −3 4 1 1 1 1 x 7 6 0 0 . . 0 0 0 2 7 6 0 . . 0 0 0 a1 + b1 a1 + b2 . . a1 + bn 0 2 7 6 . . 0 0 0 a +b a 2 + b2 . . a 2 + bn g) h) 2 1 . . . . . . . . . . . . . . 0 0 0 0 . . 2 7 6 a n + b1 a n + b2 . . a n + bn 0 0 0 0 . . 0 2 7 5 3 0 0 . . 0 0 2 5 3 0 . . 0 0 0 2 5 3 . . 0 0 i) . . . . . . . . 0 0 0 0 . . 5 3 0 0 0 0 . . 2 5 ⎛1 2 1⎞ ⎛ 2 1 3⎞ ⎜ ⎟ ⎜ ⎟ Bài 9: Cho: A = ⎜ 1 2 2 ⎟ và B = ⎜1 2 2⎟ ⎜ 2 5 2⎟ ⎜ 2 −1 2⎟ ⎝ ⎠ ⎝ ⎠ Tính các định thức sau: detA, debt, detA.B, det5.A, detA3. Bài 10: Tìm hạng của các ma trận sau:
  3. ⎛ 1 1 − 1⎞ ⎛ 1 − 2 1⎞ ⎛1 − 2 3 4 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ a) A = ⎜ 2 3 1 ⎟ b) A = ⎜ − 2 − 6 0 ⎟ c) A = ⎜ 3 5 1 − 1⎟ ⎜5 8 2 ⎟ ⎜ 4 2 2⎟ ⎜5 4 2 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ 1 − 2 3 −1 −1⎞ ⎜ ⎟ ⎛− 5 2 1 1 ⎞ ⎜ 2 −1 1 0 − 2⎟ ⎛3 5 7⎞ ⎜ ⎟ ⎜ ⎟ d) A = ⎜ 11 4 − 1 − 2 ⎟ ; e) ⎜ − 2 − 5 8 − 4 3 ⎟ ; g) A = ⎜ 1 2 3 ⎟ ; ⎜ ⎟ ⎜ 2 2 0 −1⎟ ⎜ 6 0 − 4 2 − 7⎟ ⎜1 3 5⎟ ⎝ ⎠ ⎝ ⎠ ⎜ −1 −1 1 −1 2 ⎟ ⎝ ⎠ ⎛3 2 −1 2 0 1 ⎞ ⎜ ⎟ ⎜4 1 0 −3 0 2 ⎟ ⎛ 1 1 − 3⎞ ⎛1 2 3 4 ⎞ ⎜ ⎟ ⎜ ⎟ f) A = ⎜ 2 − 1 − 2 1 1 − 3 ⎟ ; h) A = ⎜ −1 0 2 ⎟ ; k) A = ⎜ 2 4 6 8 ⎟ ⎜ ⎟ ⎜3 1 3 − 9 −1 6 ⎟ ⎜− 3 5 0 ⎟ ⎜ 3 6 9 12 ⎟ ⎝ ⎠ ⎝ ⎠ ⎜3 −1 − 5 7 ⎝ 2 − 7⎟ ⎠ Bài 11: Tìm và biện luận hạng của ma trận sau theo tham số m ∈ K: ⎛ 1 1 − 3⎞ ⎛ m 5m −m ⎞ ⎜ ⎟ ⎜ ⎟ a) ⎜ 2 1 m ⎟ b) ⎜ 2m m 10m ⎟ ⎜1 m 3 ⎟ ⎜ − m − 2m − 3m ⎟ ⎝ ⎠ ⎝ ⎠ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH VÀ ỨNG DỤNG Bài 1: Dùng thuật toán Gauss hoặc Gauss-Jordan giải các phương trình sau: ⎧2 x1 + x2 − 2 x3 = 10 ⎧ x1 + 2x 2 + x 3 = 7 ⎧2 x1 + x2 − 3 x3 = 1 ⎪ ⎪ ⎪ a) ⎨3x1 + 2 x2 + 2 x3 = 1 b) ⎨2x1 - x 2 + 4x 3 = 17 c) ⎨5 x1 + 2 x2 − 6 x3 = 5 ⎪5 x + 4 x + 3 x = 4 ⎪3x - 2x + 2x = 14 ⎪3x − x − 4 x = 7 ⎩ 1 2 3 ⎩ 1 2 3 ⎩ 1 2 3 ⎧ x1 + 2x 2 + 3x 3 = 14 ⎧ x1 + x2 = 7 ⎪3x - 2x + x = 10 ⎧ x1 + 2 x2 − x3 = 3 ⎪ ⎪ 1 2 3 ⎪ ⎪ x2 - x3 + x 4 = 5 ⎪ d) ⎨2 x1 + 5 x2 − 4 x3 = 5 e) ⎨ f) ⎨ x1 + x 2 + x 3 = 6 ⎪3x + 4 x + 2 x = 12 ⎪ x1 - x2 + x3 + x4 = 6 ⎪2x + 3x - x = 5 ⎩ 1 2 3 ⎪ x2 - x 4 = 10 ⎪ 1 2 3 ⎩ ⎪x1 + x2 = 3 ⎩ Bài 2: Giải các hệ phương trình tuyến tính thuần nhất sau: ⎧ x1 + 2 x2 + x3 = 0 ⎧ x1 + x2 − 2 x3 + 3 x4 = 0 ⎪ ⎪ a) ⎨2 x1 + 5 x2 − x3 = 0 b) ⎨2 x1 + 3x2 + 3x3 − x4 = 0 ⎪3x − 2 x − x = 0 ⎪5 x + 7 x + 4 x + x = 0 ⎩ 1 2 3 ⎩ 1 2 3 4
  4. ⎧ x1 + x2 − 3x3 + 2 x4 = 0 ⎪x − 2x − x = 0 ⎧2 x1 − 2 x2 + x3 = 0 ⎪ ⎪ c) ⎨ 1 2 4 d) ⎨3x1 + x2 − x3 = 0 ⎪ x2 + x3 + 3x4 = 0 ⎪ x − 3x + 2 x = 0 ⎪2 x1 − 3x2 − 2 x3 = 0 ⎩ 1 2 3 ⎩ ⎧ x1 + x2 − x3 = 1 ⎪ Bài 3: Cho hệ phương trình: ⎨2 x1 + 3x2 + kx3 = 3 ⎪ x + kx + 3x = 2 ⎩ 1 2 3 Xác định trị số k ∈ K sao cho: a) Hệ phương trình có nghiệm duy nhất; b) Hệ không có nghiệm c) Hệ có vô số nghiệm Bài 4: Giải các hệ phương trình sau bằng cách ấp dụng quy tắc Cramer: ⎧ x1 + x2 − 2 x3 = 6 ⎧3x1 + 2 x2 + x3 = 5 ⎪ ⎪ a) ⎨2 x1 + 3x2 − 7 x3 = 16 b) ⎨2 x1 + 3x2 + x3 = 1 ⎪5 x + 2 x + x = 16 ⎪2 x + x + 3x = 11 ⎩ 1 2 3 ⎩ 1 2 3 ⎧ x1 + x2 + x3 + x4 = 2 ⎧2 x1 + z 2 + 5 x3 + x 4 = 5 ⎪ x + 2 x + 3x + 4 x = 2 ⎪ x + x − 3x − 4 x = −1 ⎪ ⎪ c) ⎨ 1 2 3 4 d) ⎨ 1 2 3 4 ⎪ 2 x1 + 3x2 + 5 x3 + 9 x4 = 2 ⎪3 x1 + 6 x 2 − 2 x3 + x 4 = 8 ⎪ x1 + x2 + 2 x3 + 7 x4 = 2 ⎩ ⎪2 x1 + 2 x 2 + 2 x3 − 3 x 4 = 2 ⎩ Bài 5: Giải và biện luận theo tham số thực các hệ phương trình sau: ⎧mx1 + x2 + x3 = 1 ⎧ax1 + x2 + x3 = 4 ⎪ ⎪ a) ⎨ x1 + mx2 + x3 = m b) ⎨ x1 + bx2 + x3 = 3 ⎪ ⎪x + 2x + x = 4 ⎩ x1 + x2 + mx3 = m 2 ⎩ 1 2 3 Bài 6: Xét thị trường có 3 loại hàng hóa. Biết hàm cung và hàm cầu của 3 loại hàng hóa trên là: QS1 = 18p1 - p2 - p3 - 45 ; Qd1 = - 6p1 + 2p2 + 130 QS2 = - p1 + 13p2 - p3 - 10 ; Qp2 = p1 - 7p2 + p3 + 220 QS3 = - p1 - p2 +10p3 - 15 ; Qp3 = 3p2 - 5p3 + 215
  5. Tìm điểm cân bằng thị tường. Bài 7: Xét thị trường có 4 loại hàng hóa. Biết hàm cung và hàm cầu của 4 loại hàng hóa trên là: QS1 = 20p1 - 3p2 - p3 - p4 - 30 ; Qp1 = - 11p1 + p2 + 2p3 + 5p4 + 115 QS2 = -2p1 + 18p2 - 2p3 - p4 - 50 ; Qd2 = p1 - 9p2 + p3 + 2p4 + 250 QS3 = -p1 - 2p2 + 12p3 - 40 ; Qd3 = p1 + p2 - 7p3 + 3p4 + 150 QS4 = -2p1 - p2 + 18p4 - 15 ; Qd4 = p1 + 2p3 - 10p4 + 180 Tìm điểm cân bằng thị trường. Bài 8: Xét thị trường có 3 loại hàng hóa. Biết hàm cung và hàm cầu của 3 loại hàng hóa trên là: QS1 = 11p1 - 2p2 - p3 - 20 ; Qd1 = - 9p1 + p2 + p3 + 210 QS2 = - 2p1 + 19p2 - p3 - 50 ; Qp2 = p1 - 6p2 + 135 QS3 = - 2p1 - p2 + 11p3 - 10 ; Qd3 = 2p1 - 4p3 + 220 Tìm điểm cân bằng thị tường. Bài 9: Xét mô hình input – output mở gồm 3 ngành kinh tế với hệ số ma trận đầu vào ⎛ 0,2 0,3 0,4 ⎞ ⎜ ⎟ là: A = ⎜ 0,3 0,2 0,1 ⎟ và yêu cầu của ngành kinh tế mở đối với 3 ngành kinh tế là 22; ⎜ 0,2 0,3 0,1 ⎟ ⎝ ⎠ 98; 56. Tìm mức sản lượng của 3 ngành kinh tế trên. Bài 10: Xét mô hình input – output mở gồm 3 ngành kinh tế với hệ số ma trận đầu ⎛ 0,1 0,3 0,2 ⎞ ⎜ ⎟ vào là: A = ⎜ 0,4 0,2 0,3 ⎟ . Tìm mức sản lượng của 3 ngành kinh tế trên nếu biết yêu ⎜ 0,2 0,3 0,1 ⎟ ⎝ ⎠ cầu của ngành kinh tế mở đối với 3 ngành kinh tế trên là 118; 52; 96.
230786

Sponsor Documents