Xem mẫu

52 T.D. BROWNING But now (18) implies that Y14 ¿ B1/2/(Y1/2Y1/2Y24Y1/2), and (20) and (21) together imply that Y03 ¿ Y33Y34/Y04. We therefore deduce that 1/2 3/4 3/4 1/2 1/2 1/4 1/4 03 04 23 24 33 34 Y1,Yi3,Yi4 (20) holds Y03,Y04,Y33 Y1,Y23,Y24,Y34 ¿ B1/2 Y1/2Y1/2Y33Y34. Y1,Y04,Y33 Y23,Y24,Y34 Finally it follows from (17) and (21) that Y33 ¿ B1/2/(Y1/2Y1/2Y34), whence N ¿ B 1 ¿ B(logB)5, Y1,Yi3,Yi4 Y04,Y13,Y14,Y23,Y34 (20) holds which is satisfactory for the theorem. Next we suppose that (22) holds, so that (23) also holds. In this case it follows from (19), together with the inequality Y1Y13Y14 ¿ Y03Y04, that 1/2 1/2 1/4 3/4 1/2 1/4 04 14 24 34 03 04 03 04 24 34 1/2 1/2 1/2 1/2 1/4 03 23 33 1 23 33 On combining this with the inequality Y14 ¿ B1/2/(Y1/2Y1/2Y24Y1/2), that follows from (18), we may therefore deduce from (25) that X X N ¿ Y1Y13Y14Y23Y24Y33Y34 Y1,Yi3,Yi4 (22) holds Y1,Yi3,Yi4 (22) holds ¿ 1/2 1/4 3/4 1/2 3/2 3/4 5/4 1 03 04 14 23 24 33 34 Y1,Y03,Y04,Y33 Y14,Y23,Y24,Y34 ¿ B1/2 1/4 1/4 1/2 1/2 3/4 3/4 03 04 23 24 33 34 Y1,Y03,Y04 Y23,Y24,Y33,Y34 Now it follows from (23) that Y33 ¿ Y03Y04/Y34. We may therefore combine this with the first inequality in (17) to conclude that X N ¿ B1/2 X Y03Y04Y1/2Y1/2 ¿ B(logB)5, Y1,Yi3,Yi4 (22) holds Y1,Y03,Y04 Y23,Y24,Y34 which is also satisfactory for the theorem. Finally we suppose that (24) holds. On combining (19) with the fact that Y33Y34 ¿ Y03Y04, we obtain Y04Y14Y24Y34 Y03Y04 Y04Y14Y24 Y03Y13Y23 Y34 Y13Y23 Summing (25) over Y33 first, with min{Y03Y04,Y33Y34} 6 Y1/2Y1/2Y1/2Y 1/2, we therefore obtain 1/2 1/2 3/2 1/2 3/2 1/2 1 03 04 13 14 23 24 34 Y1,Yi3,Yi4 (24) holds Y1,Y03,Y04,Y13 Y14,Y23,Y24,Y34 AN OVERVIEW OF MANIN’S CONJECTURE FOR DEL PEZZO SURFACES 53 But then we may sum over Y03,Y13 satisfying the inequalities in (17), and then Y1 satisfying the second inequality in (18), in order to conclude that X 1/4 X 1/2 1/2 3/2 1/4 5/4 1/2 04 13 14 23 24 34 Y1,Yi3,Yi4 (24) holds Y1,Y04,Y13 Y14,Y23,Y24,Y34 ¿ B1/2 Y1/2Y1/2Y14Y24Y1/2 ¿ B(logB)5. Y1,Y04,Y14 Y23,Y24,Y34 This too is satisfactory for Theorem 3, and thereby completes its proof. 4. Open problems We close this survey article with a list of five open problems relating to Manin’s conjecture for del Pezzo surfaces. In order to encourage activity we have deliberately selected an array of very concrete problems. (i) Establish (3) for a non-singular del Pezzo surface of degree 4. The surface x0x1 −x2x3 = x0 + x1 + x2 −x3 −2x4 = 0 has Picard group of rank 5. (ii) Establish (3) for more singular cubic surfaces. Can one establish the Manin conjecture for a split singular cubic surface whose universal torsor has more than one equation? The Cayley cubic surface (8) is such a surface. (iii) Break the 4/3-barrier for a non-singular cubic surface. We have yet to prove an upper bound of the shape NU,H(B) = OS(Bθ), with θ < 4/3, for a single non-singular cubic surface S ⊂ P3. This seems to be hardest when the surface doesn’t have a conic bundle structure over Q. The surface x0x1(x0 + x1) = x2x3(x2 + x3) admits such a structure; can one break the 4/3-barrier for this example? (iv) Establish the lower bound NU,H(B) À B(logB)3 for the Fermat cubic. The Fermat cubic x0 + x1 = x2 + x3 has Picard group of rank 4. (v) Better bounds for del Pezzo surfaces of degree 2. Non-singular del Pezzo surfaces of degree 2 take the shape t2 = F(x0,x1,x2), for a non-singular quartic form F. Let N(F;B) denote the number of integers t,x0,x1,x2 such that t2 = F(x) and |x| 6 B. Can one prove that we always have N(F;B) = Oε,F (B2+ε)? Such an estimate would be essentially best possible, as consideration of the form F0(x) = x0 +x1 −x2 shows. The best result in this direction is due to Broberg [Bro03a], who has established the weaker bound N(F;B) = Oε,F (B9/4+ε). For certain quartic forms, such as F1(x) = x0 +x1 +x2, the Manin conjecture implies that one ought to be able to replace the exponent 2+ε by 1+ε. Can one prove that N(F1;B) = O(Bθ) for some θ < 2? Acknowledgements. The author is extremely grateful to Professors de la Bret`eche and Salberger, who have both made several useful comments about an earlier version of this paper. It is also a pleasure to thank the anonymous referee for his careful reading of the manuscript. 54 T.D. BROWNING References [BM90] V. V. Batyrev & Y. I. Manin – “Sur le nombre des points rationnels de hauteur born´e des vari´et´es alg´ebriques”, Math. Ann. 286 (1990), no. 1-3, p. 27–43. [Bro03a] N. Broberg – “Rational points on finite covers of P1 and P2”, J. Number Theory 101 (2003), no. 1, p. 195–207. [Bro03b] T. D. Browning – “Counting rational points on del Pezzo surfaces of degree five”, [Bro06] [BT98a] [BT98b] [BW79] [Cay69] [CLT02] [CT88] [CTS76] [CTS87] [Dav05] [dlB98] [dlB01] [dlB02] [dlBBa] in Proceedings of the Session in Analytic Number Theory and Diophantine Equations (Bonn), Bonner Math. Schriften, vol. 360, Univ. Bonn, 2003, 22 pages. , “The density of rational points on a certain singular cubic surface”, J. Number Theory 119 (2006), p. 242–283. V. V. Batyrev & Y. Tschinkel – “Manin’s conjecture for toric varieties”, J. Algebraic Geom. 7 (1998), no. 1, p. 15–53. , “Tamagawa numbers of polarized algebraic varieties”, Ast´erisque (1998), no. 251, p. 299–340, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). J. W. Bruce & C. T. C. Wall – “On the classification of cubic surfaces”, J. London Math. Soc. (2) 19 (1979), no. 2, p. 245–256. A. Cayley – “A memoir on cubic surfaces”, Phil. Trans. Roy. Soc. 159 (1869), p. 231– 326. A. Chambert-Loir & Y. Tschinkel – “On the distribution of points of bounded height on equivariant compactifications of vector groups”, Invent. Math. 148 (2002), no. 2, p. 421–452. D. F. Coray & M. A. Tsfasman – “Arithmetic on singular Del Pezzo surfaces”, Proc. London Math. Soc. (3) 57 (1988), no. 1, p. 25–87. J.-L. Colliot-Thelene & J.-J. Sansuc – “Torseurs sous des groupes de type multipli-catif; applications `a l’´etude des points rationnels de certaines vari´et´es alg´ebriques”, C. R. Acad. Sci. Paris S´er. A-B 282 (1976), no. 18, p. Aii, A1113–A1116. , “La descente sur les vari´et´es rationnelles. II”, Duke Math. J. 54 (1987), no. 2, p. 375–492. H. Davenport – Analytic methods for Diophantine equations and Diophantine in-equalities, second ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2005, With a foreword by R. C. Vaughan, D. R. Heath-Brown and D. E. Freeman, Edited and prepared for publication by T. D. Browning. R. de la Breteche – “Sur le nombre de points de hauteur born´ee d’une certaine surface cubique singuli`ere”, Ast´erisque (1998), no. 251, p. 51–77, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). , “Compter des points d’une vari´et´e torique”, J. Number Theory 87 (2001), no. 2, p. 315–331. , “Nombre de points de hauteur born´ee sur les surfaces de del Pezzo de degr´e 5”, Duke Math. J. 113 (2002), no. 3, p. 421–464. R. de la Breteche & T. Browning – “On Manin’s conjecture for singular del Pezzo surfaces of degree four, I”, Michigan Math. J., to appear. [dlBBb] , “On Manin’s conjecture for singular del Pezzo surfaces of degree four, II”, Math. Proc. Camb. Phil. Soc., to appear. [dlBBD] R. de la Breteche, T. D. Browning & U. Derenthal – “On Manin’s conjecture for a certain singular cubic surface”, Ann. Sci. Ecole Norm. Sup., to appear. [dlBF04] R. de la Breteche & E. Fouvry – “L’´eclat´e du plan projectif en quatre points dont deux conjugu´es”, J. Reine Angew. Math. 576 (2004), p. 63–122. [dlBSD] R. de la Breteche & P. Swinnerton-Dyer – “Fonction zˆeta des hauteurs associ´ee `a une certaine surface cubique”, submitted, 2005. [FMT89] J. Franke, Y. I. Manin & Y. Tschinkel – “Rational points of bounded height on Fano varieties”, Invent. Math. 95 (1989), no. 2, p. 421–435. [Fou98] E. Fouvry – “Sur la hauteur des points d’une certaine surface cubique singuli`ere”, Ast´erisque (1998), no. 251, p. 31–49, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). [HB97] D. R. Heath-Brown – “The density of rational points on cubic surfaces”, Acta Arith. 79 (1997), no. 1, p. 17–30. AN OVERVIEW OF MANIN’S CONJECTURE FOR DEL PEZZO SURFACES 55 [HB02] , “The density of rational points on curves and surfaces”, Ann. of Math. (2) 155 (2002), no. 2, p. 553–595. [HB03] , “The density of rational points on Cayley’s cubic surface”, in Proceedings of the Session in Analytic Number Theory and Diophantine Equations (Bonn), Bonner Math. Schriften, vol. 360, Univ. Bonn, 2003, 33 pages. [HBM99] D. R. Heath-Brown & B. Z. Moroz – “The density of rational points on the cubic surface X0 = X1X2X3”, Math. Proc. Cambridge Philos. Soc. 125 (1999), no. 3, p. 385– 395. [HP52] [HT04] [Lip69] [Man86] [Pey95] [Pey04] [PT01a] [PT01b] [Sal98] [Sch64] [SD04] [SD05] [Sko93] [SSD98] [Tsc02] [Tsc03] [Wal80] W. V. D. Hodge & D. Pedoe – Methods of algebraic geometry. Vol. II. Book III: Gen-eral theory of algebraic varieties in projective space. Book IV: Quadrics and Grassmann varieties, Cambridge University Press, 1952. B. Hassett & Y. Tschinkel – “Universal torsors and Cox rings”, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkha¨user Boston, Boston, MA, 2004, p. 149–173. J. Lipman – “Rational singularities, with applications to algebraic surfaces and unique factorization”, Inst. Hautes Etudes Sci. Publ. Math. (1969), no. 36, p. 195–279. Y. I. Manin – Cubic forms, second ed., North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam, 1986. E. Peyre – “Hauteurs et mesures de Tamagawa sur les vari´et´es de Fano”, Duke Math. J. 79 (1995), no. 1, p. 101–218. , “Counting points on varieties using universal torsors”, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkha¨user Boston, Boston, MA, 2004, p. 61–81. E. Peyre & Y. Tschinkel – “Tamagawa numbers of diagonal cubic surfaces, numerical evidence”, Math. Comp. 70 (2001), no. 233, p. 367–387. , “Tamagawa numbers of diagonal cubic surfaces of higher rank”, in Rational points on algebraic varieties, Progr. Math., vol. 199, Birkh¨auser, Basel, 2001, p. 275– 305. P. Salberger – “Tamagawa measures on universal torsors and points of bounded height on Fano varieties”, Ast´erisque (1998), no. 251, p. 91–258, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). L. Schlafli – “On the distribution of surfaces of the third order into species”, Phil. Trans. Roy. Soc. 153 (1864), p. 193–247. P. Swinnerton-Dyer – “Diophantine equations: progress and problems”, in Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkh¨auser Boston, Boston, MA, 2004, p. 3–35. , “Counting points on cubic surfaces. II”, in Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkh¨auser Boston, Boston, MA, 2005, p. 303– 309. A. N. Skorobogatov – “On a theorem of Enriques-Swinnerton-Dyer”, Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), no. 3, p. 429–440. J. B. Slater & P. Swinnerton-Dyer – “Counting points on cubic surfaces. I”, Ast´erisque (1998), no. 251, p. 1–12, Nombre et r´epartition de points de hauteur born´ee (Paris, 1996). Y. Tschinkel – “Lectures on height zeta functions of toric varieties”, in Geometry of toric varieties, S´emin. Congr., vol. 6, Soc. Math. France, Paris, 2002, p. 227–247. , “Fujita’s program and rational points”, in Higher dimensional varieties and rational points (Budapest, 2001), Bolyai Soc. Math. Stud., vol. 12, Springer, Berlin, 2003, p. 283–310. C. T. C. Wall – “The first canonical stratum”, J. London Math. Soc. (2) 21 (1980), no. 3, p. 419–433. School of Mathematics, University of Bristol, Bristol BS8 1TW, UK E-mail address: t.d.browning@bristol.ac.uk ... - tailieumienphi.vn
nguon tai.lieu . vn