Xem mẫu

  1. 11 H PHƯƠNG TRÌNH HAY 8 1A 1 Gi i h phương trình:  x3 − y 3 = 35 2x2 + 3y 2 = 4x − 9y L i gi i p1 Phân tích: Đây có l là bài quen thu c đ i v i nhi u b n, đ gi i h này ta ph i quan sát các h ng t c a 2 phương trình. Phương trình ban đ u là b c 3, phương trình 2 là b c 2 và b c m t, t đó ta lien tư ng đ n h ng đ ng th c (a + b)3 , v y ta ph i c g ng tìm 1 h s nhân vào phương trình 1 ho c phương trình 2 đ khi c ng ho c tr 2 v ta s ra h ng đ ng th c đó. Gi i: Ta nhân phương trình (2) cho 3. Khi đó ta có h m i là: x3 − y 3 = 35 6x2 + 9y 2 = 12x − 27y -L Ta l y phương trình (1) tr đi phương trình (2), ta đư c: x3 − y 3 − 35 − 6x2 − 9y 2 + 12x − 27y = 0 ⇔ (x3 − 6x2 + 12x − 8) − (y 3 + 9y 2 + 27y + 3) = 0 ⇔ (x − 2)3 = (y + 3)3 ⇔ x = y + 5 Thay x = y + 5 vào m t trong 2 phương trình ban đ u ta s tìm đư c nghi m Đáp s : (x; y) = (3; −2); (2; −3) V y ý tư ng gi i quy t bài d ng này là tìm 1 h s α nhân vào phương trình ch a b c 2 và b c 1 đ uy khi c ng tr 2 v phương trình ta s thu đư c h ng đ ng th c (a + b)3 . (1) + (2).α ⇔ (x + a)3 = (y + b)3 Sau đây là m t s bài tương t đ các b n rèn luy n thêm: x3 + y 3 = 91 tD 1) Đáp s : (x; y) = (3; 4); (4; 3) 4x2 + 3y 2 = 16x + 9y x3 + y 3 = 9 2) Đáp s : (x; y) = (2; 1); (1; 2) x2 + 2y 2 = x + 4y x3 + 3xy 2 = −49 3) Đáp s : (x; y) = (−1; −4); (−1; 4) x2 − 8xy + y 2 = 8y − 17x 2 Gi i h phương trình:  −x3 + 3x + 4 = y Nh 2y 3 − 6y − 2 = x L i gi i Phân tích: Tho t nhìn bài này, có nhi u b n s c g ng dùng các phương pháp th ho c tìm h s nhân cho 1 phương trình nào đó đ bi n đ i, nhưng các cách đó s r t ph c t p ho c khó khăn trong vi c xoay s và tìm ki m. Vì th ta liên tư ng đ n vi c dùng phương pháp đánh giá đ tìm nghi m h phương trình. (n u b n nào nhanh m t có th đoán nghi m c a phương trình r i c g ng Lê tách đ so sánh v i nghi m đó đ bi n lu n nghi m duy nh t) Gi i: Ta có h phương trình đã cho tương đương v i: Lê Nh t Duy - L p 11A8 1
  2. −(x3 − 3x − 2) = y − 2 −(x + 1)2 (x − 2) = y − 2 (1) ⇔ 8 2(y 3 − 3y − 2) = x − 2 2(y + 1)2 (y − 2) = x − 2 (2) T đó, ta xét: N u x > 2 thì t phương trình (1) ta suy ra y < 2, nhưng y < 2 thì s không th a 1A phương trình (2) vì th ta lo i. Tương t n u x < 2 ta cũng lo i. V y x = 2 ,suy ra y = 2. Th l i ta th y đó là nghi m c a h . Đáp s : (x; y) = (2; 2). 3 Gi i h phương trình: p1 x4 + y 2 = 698  81 x2 + y 2 + xy − 3x − 4y + 4 = 0 L i gi i Phân tích: Các b n s r t khó gi i n u c chú ý t i phương trình 1, vì nó là m t cái b c 4 và 1 cái b c 2 không liên quan gì nhau. Hãy quan sát phương trình 2 ta th y đó là phương trình b c cao nh t là b c 2 đ i v i các h ng t .Vì th ta s phân tích tích nghi m c a phương trình 2 theo n x và theo n y. M t là n u ∆ là s chính phương thì ta có th phân tích thành nhân t r i k t h p v i Gi i: T phương trình (2) ta có: -L phương trình 1 tìm nghi m,hai là ta có th tìm đi u ki n c a x và y đ bi n lu n phương trình. x2 + (y − 3)x + (y − 2)2 = 0 Đ phương trình có nghi m thì: 7 ∆ = (y − 3)2 − 4(y − 2)2 ≥ 0 ⇔ 1 ≤ y ≤ 3 uy Tương t ta vi t phương trình (2) thành: y 2 + (x − 4)y + x2 − 3x + 4 = 0 Đ phương trình có nghi m thì: 4 ∆ = (x − 4)2 − 4(x2 − 3x + 4) ≥ 0 ⇔ 0 ≤ x ≤ tD 3 T đó ta suy ra: 256 49 687 698 x4 + y 2 ≤ + = < 81 9 81 81 V y h phương trình đã cho vô nghi m. 4 Gi i h phương trình:   18x2 2012 = y2 4 2 3  y x − 6x2 y 2 + 81 + 3 + x2 y 2 − 9y 2 x + y2 Nh   4 x(x + y 4 ) = y 6 (1 + y 4 ) L i gi i Xét y = 0 không là nghi m c a h phương trình, ta chia 2 v c a phương trình (2) cho y 5 T phương trìnnh th 2, ta có: x5 x + = y5 + y y5 y Xét hàm f (t) = t5 + t, f (t) = 5t4 + 1 > 0∀t. ⇔ x = y 2 Lê Thay vào phương trình (1) ta đư c: √ 4 √ x4 − 6x3 + 81 + 2012 x3 − 9x2 + 18x = x − 3 √ √ Đ t 4 x4 − 6x3 + 81 = a, 2012 x3 − 9x2 + 18x = b (a, b > 0). Ta có: 2 Trư ng THPT Thành Ph Cao Lãnh - t nh Đ ng Tháp
  3. a+b=x−3 ⇒ (a + b)4 = a4 − 6b2012 ⇒ b = 0 8 a4 − 6b2012 = (x − 3)4 ⇒ x = 6 ho c x = 3 (nghi m x = 0 lo i) √ √ 1A Đáp s : (x; y) = 3; ± 3 ; 6; ± 6 5 Gi i h phương trình:  x + 6√xy − y = 6  (1) 3 3 x + 6(x + y ) − 2(x2 + y 2 ) = 3 (2) p1 x2 + xy + y 2  L i gi i Phân tích: Dùng b t đ ng th c đ đánh giá nghi m. Gi i: xy ≥ 0 Đi u ki n: x2 + xy + y 2 = 0 N u x = 0 ho c y = 0 thì h phương trình vô nghi m N u x ≤ 0, y ≤ 0(x, y không đ ng th i b ng 0) thì VT c a (2) âm, PT (2) không th a mãn. Do đó M t khác, ta có: √ x2 + y 2 -L x > 0, y > 0. Vì 2 xy ≤ x + y nên PT (1) suy ra: √ 6 = x + xy − y ≤ x + 3(x + y) − y = 4x + 2y ⇒ 2x + y ≥ 3 (3). 3(x2 + y 2 ) 3(x3 + y 3 ) 2(x3 + y 3 ) xy ≤ ⇒ x2 + xy + y 2 ≤ ⇒ 2 ≥ (4) 2 2 x + xy + y 2 x2 + y 2 Ta ch ng minh r ng: 2(x3 + y 3 ) ≥ 2(x2 + y 2 ) (5) uy x2 + y 2 Th t v y BDT (5) tương đương v i: 2(x3 + y 3 )2 ≥ (x2 + y 2 )3 ⇔ x6 + y 6 + 4x3 y 3 ≥ 3x4 y 2 + 3x2 y 4 (6) Áp d ng BDT Cauchy ta có: tD x6 + x3 y 3 + x3 y 3 ≥ 3 3 x1 2y 6 = 3x4 y 2 y 6 + x3 y 3 + x3 y 3 geq 3 x6 y 1 2 = 3x2 y 4 C ng v theo v ta đư c BDT (6) , suy ra BDT (5) đúng. 3(x3 + y 3 ) T (4) và (5) suy ra 2 ≥ 2(x2 + y 2 ) x + xy + y 2 K t h p v i PT (2) và lưu ý r ng: 2(x2 + y 2 ) ≥ x + y , ta đư c : 6(x3 + y 3 ) 3=x+ 2 − 2(x2 + y 2 ) ≥ x + 2(x2 + y 2 ) ≥ x + (x + y) = 2x + y (7) x + xy + y 2 T (3) và (7) suy ra 2x + y = 3 và x = y. Ta đư c x = y = 1 ( th a m n đi u ki n). Nh Đáp s : (x; y) = (1; 1). 6 Gi i h phương trình:  x + y = 1 − 2y  2−y  1 + xy  x − y = 1 − 3x  1 − xy 3−x L i gi i Lê Phân tích: Bài này nhìn vào r t ph c t p, không bi t đ nh hư ng đi t đâu, vì th phãi c g ng tìm cách đ t n đ đưa v m t phương trình đơn gi n hơn. Gi i: Lê Nh t Duy - L p 11A8 3
  4.  u − v = 2 − u (1)  u−1 v−1  8 Đ t: x = , y= , u+v u+2 u+1 v+1  uv − 1 = 3 − v (2)  uv + 1 3+v 1A T phương trình (1) ta có u−v 2−u 2−v 2 + v − 2u = = = ⇒ (2 − v)2 = (2 + v)2 − 4u2 ⇒ u2 = 2v u+v u+2 2 + v + 2u 2−v T phương trình (2) ta có : uv − 1 3−v 3u − uv 3u − 1 3u + 1 − 2uv = = = = uv + 1 3+v 3u + uv 3u + 1 + 2uv 3u − 1 ⇒ (3u − 1)2 = (3u + 1)2 − 4u2 v 2 ⇔ u2 v 2 = 3u p1 u2 = 2v V y ta có h : (3) u2 v 2 = 3u Xét u = 0 ⇒ v = 0 ⇒ x = y = −1 ⇒ xy = 1 (lo i do 1 − xy = 0) u2 = 2v Như v y (3) tương đương: uv 2 = 3 9 √ √ T h trên suy ra u > 0 ⇒ u2 v 4 = 9 ⇒ 2v.v 4 = 9 ⇒ v = 5 ⇒ u2 = 5 144 ⇒ u = 5 12 (do u > 0) 2 √   Đáp s : (x; y) = 5  √12 − 1 ; 2 5 -L 5 9 −1 12 + 1 5 9 + 1 2  7 Gi i h phương trình:  xy + (x − y)(√xy − 2) + √x = y + √y uy (x + 1) y + √xy + x(1 − x) = 4 L i gi i Phân tích: Ta th và d đoán h phương trình s có nghi m x = y. Vì th ta s tìm cách đ phân tD tích thành phương trình tích xu t hi n (x − y)(. . . ..). T đó ta quan sát và th y phương trình (1) là kh thi nh t. Gi i: Đi u ki n: x ≥ 0; y ≥ 0 Phương trình (1) tương đương: √ √ √ ⇔ xy + (x − y)( xy − 2) − y + ( x − y) = 0 √ y(x − y) + (x − y)( xy − 2) x−y ⇔ √ +√ √ =0 xy + (x − y)( xy − 2) + y x+ y √ y + xy − 2 1 ⇔ (x − y) √ +√ √ =0 Nh xy + (x − y)( xy − 2) + y x+ y T PT (2) suy ra : √ 4 4 4 y + xy = − x(1 − x) = + (x + 1) + (x − 1)2 − 2 ≥ 2. .(x + 1) + (x − 1)2 − 2 ≥ 2 x+1 x+1 x+1 T đó ta suy ra x = y. Thay x = y vào phương trình (2). Ta có: x3 − 2x2 − 3x + 4 = 0 ⇔ (x − 1)(x2 − x − 1) = 0 ⇔ x = 1 ho c x2 − x − 1 = 0 Xét x = 1 ⇔ y = 1 √ √ √ Lê 2 1+ 5 1+ 5 1− 5 Xét x − x − 1 = 0. x = ⇔y= , x= (lo i vì x ≥ 0) √2 √ 2 2 1+ 5 1+ 5 Đáp s : (x; y) = (1; 1), ; 2 2 4 Trư ng THPT Thành Ph Cao Lãnh - t nh Đ ng Tháp
  5. 8 Gi i h phương trình: 8   x2 − y 2 = xy (x + 3) x2 (1 − 4xy 2 ) = y 2 (1 + 8x2 ) 1A L i gi i Phân tích: Ta chú ý r ng: Phương trình (2) bi n đ i m t chút ta đư c : x2 − 4x3 y 4 = y 2 + 8x2 y 2 ⇐⇒ x2 − y 2 = 4x3 y 4 + 8x2 y 2 Phương trình (1) sau khi đi u ki n ta bình phương hai v cũng thu đư c : x2 − y 2 = x2 y 2 (x + 3)2 p1 T i đây ta s ngh đ n phép th và b t nhân t chung ngay nên vi c còn l i ch là gi i các phương trình cơ b n. Gi i: T phương trình (1) ta bi n đ i :  xy(x + 3) ≥ 0 x2 − y 2 = xy(x + 3) ⇐⇒ (3) x2 − y 2 = x2 y 2 (x + 3)2 Ta l i có phương trình (2) ta bi n đ i thành :  -L x2 − 4x3 y 4 = y 2 + 8x2 y 2 ⇐⇒ x2 − y 2 = 4x3 y 4 + 8x2 y 2 Th vào (3) ta đư c h phương trình :   xy(x + 3) ≥ 0     xy(x + 3) ≥ 0 xy(x + 3) ≥ 0   x=0 ⇐⇒ ⇐⇒  (4) 4x3 y 4 + 8x2 y 2 = x2 y 2 (x + 3)2 x2 y 2 (x + 1)2 = 0  y = 0      x = −1 uy  V i: ) x = 0 =⇒ y = 0 ) y = 0 =⇒ x = 0 √ 5 tD ) x = −1 =⇒ y = ± 5 √ 5 Đáp s : (x; y) = (0; 0), −1; ± 5 9 Gi i h phương trình:  x3 − 8x = y 3 + 2y x2 − 3 = 3(1 + y 2 ) Nh L i gi i Phân tích: N u bài này ta làm như bình thư ng là th thì s là r t khó khăn trong vi c x lý. Nên ta s tìm 1 phương pháp khác, đó là phương pháp th vào m t h s nào đó c a 1 phương trình b ng 1 phương trình trong h đ t o s đ ng b c gi a 2 phương trình. Gi i: H đã cho tương đương v i:   x3 − y 3 = 2(4x + y) 3(x3 − y 3 ) = 6(4x + y) Lê ⇐⇒ x2 − 3y 2 = 6 x2 − 3y 2 = 6 Th x2 − 3y 2 = 6 vào phương trình (1) khi đã nhân 3, ta đư c: 3(x3 − y 3 ) = (x2 − 3y 2 )(4x + y) ⇐⇒ x3 + x2 y − 12xy 2 = 0 (∗) Lê Nh t Duy - L p 11A8 5
  6. Xét y = 0 không là nghi m c a h , ta chia y 2 cho 2 v c a phương trình (∗), ta đư c: 8 x3 x2 12x (∗) ⇐⇒ 3 + 2 − =0 y y y x Đ t t = , suy ra: 1A y (∗) ⇐⇒ t3 + t2 − 12t = 0 ⇐⇒ t(t2 + t − 12) = 0 Xétt = 0 ⇐⇒ x = 0 ( không là nghi m) Xét t = 3 ⇐⇒ x = 3y Xét t = −4 ⇐⇒ x = −4y p1 Thay l n lư t vào 1 trong hai phương trình ban đ u ta gi i ra nghi m. 6 6 6 6 Đáp s : (x; y) = (3; 1), (−3; −1), −4 13 ; 13 , 4 13 , − 13 Sau đây là m t bài  tương t đ các b n rèn luy n thêm: x3 + 4y = y 3 + 16x 1) Gi i h phương trình: Đáp s : (x; y) = (−1; 3), (1; −3), (0; 2), (0; −2) 1 + y 2 = 5(1 + x2 ) 10 Gi i h phương trình:  (x − 3y) (6x + 18y + 5) = 4x -L (x2 + 2xy + 4y 2 ) (8x − 16y − 9) + 9x2 + 4x = 78y − 18xy + 26 L i gi i Phân tích: Do 2 phương trình c a h đ u có phương trình tích nên ta s phân ph i và rút g n cho b t c ng k nh. Sau đó s dùng các bi n pháp đ gi i. Gi i: Ta có: uy (x − 3y)(6x + 18y + 5) = 4x ⇐⇒ 6x2 + x = 54y 2 + 15y (x2 + 2xy + 4y 2 )(8x − 16y − 9) + 9x2 + 4x = 78y − 18xy + 26 ⇐⇒ 8x3 + 4x = 64y 3 + 36y 2 + 78y + 26 Như v y ta vi t h thành:  6x2 + x = 54y 2 + 15y tD 8y 3 + 4x = 64y 3 + 36y 2 + 78y + 26 Ta nhân phương trình th nh t v i 2 r i c ng v i phương trình th hai thì thu đư c: (2x + 1)3 = (4y + 3)3 . T đây ta có: x = 2y + 1. T i đây các b n th vào (1) ho c (2) gi i s ra nghi m. 12 7 1 1 Đáp s : (x; y) = ; , ;− 5 10 3 3 11 Gi i h phương trình: Nh  √ (x + x2 + 1)(y + y 2 + 1) = 1 1 −3 y + √ + =0 5x2 − 1 2 L i gi i Phân tích: Ta bi n đ i b ng cách dùng bi u th c liên h p t phương trình đ u . Gi i: T phương trình đ u ta có : Lê √ √ √ √ (x + x2 + 1)(x − x2 + 1)(y + y 2 + 1) = x − x2 + 1 ⇐⇒ y + y 2 + 1 = x2 + 1 − x Tương t ta cũng có: √ x + x2 + 1 = y 2 + 1 − y 6 Trư ng THPT Thành Ph Cao Lãnh - t nh Đ ng Tháp
  7. C ng v theo v ta đư c x + y = 0 Thay vào phương trình 2 ta đư c : 8 1 3 y+ − =0 5y 2 − 1 2 Ta chuy n v sau đó bình phương , ta đư c: 1A (y − 1)(2y + 1)(10y 2 − 25y + 13) = 0 1 5 − 21 5 Ta ch nh n các nghi m : y = 1, y = − , y = , T đó ta suy ra nghi m c a h .  2 4  1 1  −5 + 21 5 − 21 5 5 Đáp s : (x; y) = (−1; 1), ;− , ; . p1 2 2 4 4 -L uy tD Nh Lê Lê Nh t Duy - L p 11A8 7
nguon tai.lieu . vn